
How do you factor \[4{x^2} - 12x + 9 = 0\]?
Answer
542.4k+ views
Hint: A polynomial of degree two is called a quadratic polynomial and its zeros can be found using many methods like factorization, completing the square, graphs, quadratic formula etc. The quadratic formula is used when we fail to find the factors of the equation. If factors are difficult to find then we use formula to find the roots. That is \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Complete step by step answer:
Given, \[4{x^2} - 12x + 9 = 0\]
Since the degree of the equation is 2, we have 2 factors.
On comparing the given equation with the standard quadratic equation \[a{x^2} + bx + c = 0\], we have \[a = 4\], \[b = - 12\] and \[c = 9\].
The standard form of the factorization of quadratic equation is \[a{x^2} + {b_1}x + {b_2}x + c = 0\], which satisfies the condition \[{b_1} \times {b_2} = a \times c\] and \[{b_1} + {b_2} = b\].
We can write the given equation as \[4{x^2} - 6x - 6x + 9\], where \[{b_1} = - 6\] and \[{b_2} = - 6\]. Also \[{b_1} \times {b_2} = ( - 6) \times ( - 6) = 36(ac)\] and \[{b_1} + {b_2} = - 6 - 6 = - 12(b)\].
Thus we have,
\[ \Rightarrow 4{x^2} - 12x + 9 = 4{x^2} - 6x - 6x + 9\]
\[ = 4{x^2} - 6x - 6x + 9\]
Taking ‘2x’ common in the first two terms and taking 3 common in the remaining two terms we have,
\[ = 2x\left( {2x - 3} \right) - 3(2x - 3)\]
Again taking \[\left( {2x - 3} \right)\] common we have,
\[ = \left( {2x - 3} \right)\left( {2x - 3} \right)\]
Hence the factors of \[4{x^2} - 12x + 9 = 0\] are \[\left( {2x - 3} \right)\] and \[\left( {2x - 3} \right)\]
Note: We can also find the roots of the given quadratic equation by equating the obtained factors to zero. That is
\[\left( {2x - 3} \right)\left( {2x - 3} \right) = 0\]
By zero product principle we have,
\[\left( {2x - 3} \right) = 0\] or \[\left( {2x - 3} \right) = 0\]
\[2x = 3\] or \[2x = 3\]
\[ \Rightarrow x = \dfrac{3}{2}\] and \[x = \dfrac{3}{2}\]. These are the roots of the given polynomial of degree 2. In above, if we are unable to expand the middle term of the given equation into a sum of two numbers then we use a quadratic formula to solve the given problem. Quadratic formula and Sridhar’s formula are both the same. Careful in the calculation part.
Complete step by step answer:
Given, \[4{x^2} - 12x + 9 = 0\]
Since the degree of the equation is 2, we have 2 factors.
On comparing the given equation with the standard quadratic equation \[a{x^2} + bx + c = 0\], we have \[a = 4\], \[b = - 12\] and \[c = 9\].
The standard form of the factorization of quadratic equation is \[a{x^2} + {b_1}x + {b_2}x + c = 0\], which satisfies the condition \[{b_1} \times {b_2} = a \times c\] and \[{b_1} + {b_2} = b\].
We can write the given equation as \[4{x^2} - 6x - 6x + 9\], where \[{b_1} = - 6\] and \[{b_2} = - 6\]. Also \[{b_1} \times {b_2} = ( - 6) \times ( - 6) = 36(ac)\] and \[{b_1} + {b_2} = - 6 - 6 = - 12(b)\].
Thus we have,
\[ \Rightarrow 4{x^2} - 12x + 9 = 4{x^2} - 6x - 6x + 9\]
\[ = 4{x^2} - 6x - 6x + 9\]
Taking ‘2x’ common in the first two terms and taking 3 common in the remaining two terms we have,
\[ = 2x\left( {2x - 3} \right) - 3(2x - 3)\]
Again taking \[\left( {2x - 3} \right)\] common we have,
\[ = \left( {2x - 3} \right)\left( {2x - 3} \right)\]
Hence the factors of \[4{x^2} - 12x + 9 = 0\] are \[\left( {2x - 3} \right)\] and \[\left( {2x - 3} \right)\]
Note: We can also find the roots of the given quadratic equation by equating the obtained factors to zero. That is
\[\left( {2x - 3} \right)\left( {2x - 3} \right) = 0\]
By zero product principle we have,
\[\left( {2x - 3} \right) = 0\] or \[\left( {2x - 3} \right) = 0\]
\[2x = 3\] or \[2x = 3\]
\[ \Rightarrow x = \dfrac{3}{2}\] and \[x = \dfrac{3}{2}\]. These are the roots of the given polynomial of degree 2. In above, if we are unable to expand the middle term of the given equation into a sum of two numbers then we use a quadratic formula to solve the given problem. Quadratic formula and Sridhar’s formula are both the same. Careful in the calculation part.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

