Answer
Verified
407.4k+ views
Hint: Here in this question, we have to find the factors of the given equation. If you see the equation it is in the form of \[{a^3} + {b^3}\]. We have a standard formula on this algebraic equation and it is given by \[{a^3} + {b^3} = (a + b)({a^2} - ab + {b^2})\], hence by substituting the value of a and b we find the factors.
Complete step-by-step solution:
The equation is an algebraic equation or expression, where algebraic expression is a combination of variables and constants.
Now consider the given equation \[125{x^6} - 8{y^6}\], let we write in the exponential form. The number \[125{x^6}\] can be written as \[5{x^2} \times 5{x^2} \times 5{x^2}\] and the \[8{y^6}\]can be written as \[2{y^2} \times 2{y^2} \times 2{y^2}\], in the exponential form it is \[{\left( {2{y^2}} \right)^3}\]. The number \[125{x^6}\] is written as \[5{x^2} \times 5{x^2} \times 5{x^2}\] and in exponential form is \[{(5{x^2})^3}\].
Therefore, the given equation is written as \[{\left( {5{x^2}} \right)^3} - {(2{y^2})^3}\], the equation is in the form of \[{a^3} - {b^3}\].The \[{a^3} - {b^3}\]have a standard formula on this algebraic equation and it is given by \[{a^3} - {b^3} = (a - b)({a^2} + ab + {b^2})\], here the value of a is \[5{x^2}\] and the value of b is \[2{y^2}\] . By substituting these values in the formula, we have
\[125{x^6} - 8{y^6} = {\left( {5{x^2}} \right)^3} - {\left( {2{y^2}} \right)^3} = \left( {5{x^2} - 2{y^2}} \right)\left( {{{\left( {5{x^2}} \right)}^2} + (5{x^2})(2{y^2}) + {{\left( {2{y^2}} \right)}^2}} \right)\]
On simplifying we have
\[ \Rightarrow 125{x^6} - 8{y^6} = (5{x^2} - 2{y^2})(25{x^4} + 10{x^2}{y^2} + 4{y^4})\]
The second term can’t be simplified further. Since it contains the two terms which are unknown. Therefore we keep the second term as it is. Therefore, the factors of \[125{x^6} - 8{y^6}\] is \[(5{x^2} - 2{y^2})(25{x^4} + 10{x^2}{y^2} + 4{y^4})\].
Note: To find the factors for algebraic equations or expressions, it depends on the degree of the equation. If the equation contains a square then we have two factors. If the equation contains a cube then we have three factors. Here this equation also contains 3 factors, the two factors are imaginary.
Complete step-by-step solution:
The equation is an algebraic equation or expression, where algebraic expression is a combination of variables and constants.
Now consider the given equation \[125{x^6} - 8{y^6}\], let we write in the exponential form. The number \[125{x^6}\] can be written as \[5{x^2} \times 5{x^2} \times 5{x^2}\] and the \[8{y^6}\]can be written as \[2{y^2} \times 2{y^2} \times 2{y^2}\], in the exponential form it is \[{\left( {2{y^2}} \right)^3}\]. The number \[125{x^6}\] is written as \[5{x^2} \times 5{x^2} \times 5{x^2}\] and in exponential form is \[{(5{x^2})^3}\].
Therefore, the given equation is written as \[{\left( {5{x^2}} \right)^3} - {(2{y^2})^3}\], the equation is in the form of \[{a^3} - {b^3}\].The \[{a^3} - {b^3}\]have a standard formula on this algebraic equation and it is given by \[{a^3} - {b^3} = (a - b)({a^2} + ab + {b^2})\], here the value of a is \[5{x^2}\] and the value of b is \[2{y^2}\] . By substituting these values in the formula, we have
\[125{x^6} - 8{y^6} = {\left( {5{x^2}} \right)^3} - {\left( {2{y^2}} \right)^3} = \left( {5{x^2} - 2{y^2}} \right)\left( {{{\left( {5{x^2}} \right)}^2} + (5{x^2})(2{y^2}) + {{\left( {2{y^2}} \right)}^2}} \right)\]
On simplifying we have
\[ \Rightarrow 125{x^6} - 8{y^6} = (5{x^2} - 2{y^2})(25{x^4} + 10{x^2}{y^2} + 4{y^4})\]
The second term can’t be simplified further. Since it contains the two terms which are unknown. Therefore we keep the second term as it is. Therefore, the factors of \[125{x^6} - 8{y^6}\] is \[(5{x^2} - 2{y^2})(25{x^4} + 10{x^2}{y^2} + 4{y^4})\].
Note: To find the factors for algebraic equations or expressions, it depends on the degree of the equation. If the equation contains a square then we have two factors. If the equation contains a cube then we have three factors. Here this equation also contains 3 factors, the two factors are imaginary.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE