
How do you expand\[{\left( {x + y} \right)^{10}}\]?
Answer
557.7k+ views
Hint: In this question we have to expand the given expression by using binomial formula which is given by\[{\left( {a + b} \right)^n} = {}^n{C_0}{a^n}{\left( b \right)^0} + {}^n{C_1}{a^{n - 1}}{\left( b \right)^1} + {}^n{C_2}{a^{n - 2}}{\left( b \right)^2} + {}^n{C_3}{a^{n - 3}}{\left( b \right)^3} + ....... + {}^n{C_n}{a^0}{\left( b \right)^n}\],
Now substituting the\[a\]and\[b\]value from the given expression and using the formula\[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\] we will get the required result.
Complete step-by-step answer:
Binomial expansion is given by the formula, \[{\left( {a + b} \right)^n} = {}^n{C_0}{a^n}{\left( b \right)^0} + {}^n{C_1}{a^{n - 1}}{\left( b \right)^1} + {}^n{C_2}{a^{n - 2}}{\left( b \right)^2} + {}^n{C_3}{a^{n - 3}}{\left( b \right)^3} + ....... + {}^n{C_n}{a^0}{\left( b \right)^n}\],
Where\[{}^n{C_0}\],\[{}^n{C_1}\],\[{}^n{C_2}\],\[{}^n{C_3}\]……..and\[{}^n{C_n}\]are the binomial coefficients .
So, now given expression is\[{\left( {x + y} \right)^{10}}\],
Now substituting\[a\]and\[b\]in the expansion where\[a = x\],\[b = y\]and \[n = 10\], then we get,
\[{\left( {x + y} \right)^{10}} = {}^{10}{C_0}{x^{10}}{\left( y \right)^0} + {}^{10}{C_1}{x^{10 - 1}}{\left( y \right)^1} + {}^{10}{C_2}{x^{10 - 2}}{\left( y \right)^2} + {}^{10}{C_3}{x^{10 - 3}}{\left( y \right)^3} + {}^{10}{C_4}{x^{10 - 4}}{\left( y \right)^4} + {}^{10}{C_5}{x^{10 - 5}}{\left( y \right)^5}\]\[ + {}^{10}{C_6}{x^{10 - 6}}{\left( y \right)^6} + {}^{10}{C_7}{x^{10 - 7}}{\left( y \right)^7} + {}^{10}{C_8}{x^{10 - 8}}{\left( y \right)^8} + {}^{10}{C_9}{x^{10 - 9}}{\left( y \right)^9} + {}^{10}{C_{10}}{x^{10 - 10}}{\left( y \right)^{10}}\],
Now simplifying the expansion using the formula\[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\], we get,
\[ \Rightarrow \]\[{\left( {x + y} \right)^{10}} = {x^{10}}{\left( y \right)^0} + 10{x^9}{\left( y \right)^1} + \dfrac{{10!}}{{2!\left( {10 - 8} \right)!}}{x^8}{\left( y \right)^2} + \dfrac{{10!}}{{3!\left( {10 - 3} \right)!}}{x^7}{\left( y \right)^3} + \dfrac{{10!}}{{4!\left( {10 - 4} \right)!}}{x^6}{\left( y \right)^4} + \]\[\dfrac{{10!}}{{5!\left( {10 - 5} \right)!}}{x^5}{\left( y \right)^5} + \dfrac{{10!}}{{6!\left( {10 - 6} \right)!}}{x^4}{\left( y \right)^6} + \dfrac{{10!}}{{7!\left( {10 - 7} \right)!}}{x^3}{\left( y \right)^7} + \dfrac{{10!}}{{8!\left( {10 - 8} \right)!}}{x^2}{\left( y \right)^8} + \dfrac{{10!}}{{9!\left( {10 - 9} \right)!}}{x^1}{\left( y \right)^9} + \]\[\dfrac{{10!}}{{10!\left( {10 - 10} \right)!}}{x^0}{\left( y \right)^{10}}\],
Now simplifying the expansion we get,
\[ \Rightarrow \]\[{\left( {x + y} \right)^{10}} = {x^{10}}{\left( y \right)^0} + 10{x^9}{\left( y \right)^1} + \dfrac{{10!}}{{2!\left( 2 \right)!}}{x^8}{\left( y \right)^2} + \dfrac{{10!}}{{3!\left( 7 \right)!}}{x^7}{\left( y \right)^3} + \dfrac{{10!}}{{4!\left( 6 \right)!}}{x^6}{\left( y \right)^4} + \dfrac{{10!}}{{5!\left( 5 \right)!}}{x^5}{\left( y \right)^5} + \]\[\dfrac{{10!}}{{6!\left( 4 \right)!}}{x^4}{\left( y \right)^6} + \dfrac{{10!}}{{7!\left( 3 \right)!}}{x^3}{\left( y \right)^7} + \dfrac{{10!}}{{8!\left( 2 \right)!}}{x^2}{\left( y \right)^8} + \dfrac{{10!}}{{9!\left( 1 \right)!}}{x^1}{\left( y \right)^9} + \dfrac{{10!}}{{10!\left( 0 \right)!}}{x^0}{\left( y \right)^{10}}\]
Now applying factorial formula i.e.,\[n! = n \times (n - 1) \times \left( {n - 2} \right) \times ........ \times 3 \times 2 \times 1\],we get,
\[ \Rightarrow {\left( {x + y} \right)^{10}} = {x^{10}}{\left( y \right)^0} + 10{x^9}{\left( y \right)^1} + \dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {2 \times 1} \right)\left( {8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} \right)}}{x^8}{\left( y \right)^2} + \]\[\dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {3 \times 2 \times 1} \right)\left( {7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} \right)}}{x^7}{\left( y \right)^3} + \dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {4 \times 3 \times 2 \times 1} \right)\left( {6 \times 5 \times 4 \times 3 \times 2 \times 1} \right)}}{x^6}{\left( y \right)^4} + \]\[\dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {5 \times 4 \times 3 \times 2 \times 1} \right)\left( {5 \times 4 \times 3 \times 2 \times 1} \right)}}{x^5}{\left( y \right)^5} + \dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {6 \times 5 \times 4 \times 3 \times 2 \times 1} \right)\left( {4 \times 3 \times 2 \times 1} \right)}}{x^4}{\left( y \right)^6} + \]
\[\dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} \right)\left( {3 \times 2 \times 1} \right)}}{x^3}{\left( y \right)^7} + \dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} \right)\left( {2 \times 1} \right)}}{x^2}{\left( y \right)^8} + \]
\[\dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} \right)\left( 1 \right)}}{x^1}{\left( y \right)^9} + {x^0}{\left( y \right)^{10}}\].
Now simplifying by multiplying and dividing we get,
\[ \Rightarrow \]\[{\left( {x + y} \right)^{10}} = {x^{10}} + 10{x^9}y + 45{x^8}{y^2} + 120{x^7}{y^3} + 210{x^6}{y^4} + 252{x^5}{y^5} + 210{x^4}{y^6} + 120{x^3}{y^7} + 45{x^2}{y^8} + 10x{y^9} + {y^{10}}\]
Final Answer:
\[\therefore \]The expansion form of the given expression\[{\left( {x + y} \right)^{10}}\]is equal to\[{\left( {x + y} \right)^{10}} = {x^{10}} + 10{x^9}y + 45{x^8}{y^2} + 120{x^7}{y^3} + 210{x^6}{y^4} + 252{x^5}{y^5} + 210{x^4}{y^6} + 120{x^3}{y^7} + 45{x^2}{y^8} + 10x{y^9} + {y^{10}}\]
Note:
We use the binomial theorem to help us expand binomials to any given power without direct multiplication. As we have seen, multiplication can be time-consuming or even not possible in some cases.
Binomial expansion is given by the formula, \[{\left( {a + b} \right)^n} = {}^n{C_0}{a^n}{\left( b \right)^0} + {}^n{C_1}{a^{n - 1}}{\left( b \right)^1} + {}^n{C_2}{a^{n - 2}}{\left( b \right)^2} + {}^n{C_3}{a^{n - 3}}{\left( b \right)^3} + ....... + {}^n{C_n}{a^0}{\left( b \right)^n}\],
Where\[{}^n{C_0}\],,\[{}^n{C_2}\],\[{}^n{C_3}\]……..and\[{}^n{C_n}\]are the binomial coefficients .
According to the binomial theorem, the\[{\left( {r + 1} \right)^{th}}\]term in the expansion\[{\left( {a + b} \right)^n}\]is given by,
\[{T_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}\], the term\[{\left( {r + 1} \right)^{th}}\]is the general term and the number of terms in the expansion\[{\left( {a + b} \right)^n}\]will be equal to\[\left( {n + 1} \right)\], Where\[{}^n{C_r}\]is the binomial coefficient, the sum of the binomial coefficients will be\[{2^n}\]because we know that,\[\sum\limits_{r = 0}^n {{}^n{C_r}} = {2^n}\], thus the sum of all odd binomial coefficients is equal to the sum of all even binomial coefficients and each is equal to\[{2^{n - 1}}\], the middle term depends upon the value of\[n\].\[{}^n{C_1}\]
Now substituting the\[a\]and\[b\]value from the given expression and using the formula\[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\] we will get the required result.
Complete step-by-step answer:
Binomial expansion is given by the formula, \[{\left( {a + b} \right)^n} = {}^n{C_0}{a^n}{\left( b \right)^0} + {}^n{C_1}{a^{n - 1}}{\left( b \right)^1} + {}^n{C_2}{a^{n - 2}}{\left( b \right)^2} + {}^n{C_3}{a^{n - 3}}{\left( b \right)^3} + ....... + {}^n{C_n}{a^0}{\left( b \right)^n}\],
Where\[{}^n{C_0}\],\[{}^n{C_1}\],\[{}^n{C_2}\],\[{}^n{C_3}\]……..and\[{}^n{C_n}\]are the binomial coefficients .
So, now given expression is\[{\left( {x + y} \right)^{10}}\],
Now substituting\[a\]and\[b\]in the expansion where\[a = x\],\[b = y\]and \[n = 10\], then we get,
\[{\left( {x + y} \right)^{10}} = {}^{10}{C_0}{x^{10}}{\left( y \right)^0} + {}^{10}{C_1}{x^{10 - 1}}{\left( y \right)^1} + {}^{10}{C_2}{x^{10 - 2}}{\left( y \right)^2} + {}^{10}{C_3}{x^{10 - 3}}{\left( y \right)^3} + {}^{10}{C_4}{x^{10 - 4}}{\left( y \right)^4} + {}^{10}{C_5}{x^{10 - 5}}{\left( y \right)^5}\]\[ + {}^{10}{C_6}{x^{10 - 6}}{\left( y \right)^6} + {}^{10}{C_7}{x^{10 - 7}}{\left( y \right)^7} + {}^{10}{C_8}{x^{10 - 8}}{\left( y \right)^8} + {}^{10}{C_9}{x^{10 - 9}}{\left( y \right)^9} + {}^{10}{C_{10}}{x^{10 - 10}}{\left( y \right)^{10}}\],
Now simplifying the expansion using the formula\[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\], we get,
\[ \Rightarrow \]\[{\left( {x + y} \right)^{10}} = {x^{10}}{\left( y \right)^0} + 10{x^9}{\left( y \right)^1} + \dfrac{{10!}}{{2!\left( {10 - 8} \right)!}}{x^8}{\left( y \right)^2} + \dfrac{{10!}}{{3!\left( {10 - 3} \right)!}}{x^7}{\left( y \right)^3} + \dfrac{{10!}}{{4!\left( {10 - 4} \right)!}}{x^6}{\left( y \right)^4} + \]\[\dfrac{{10!}}{{5!\left( {10 - 5} \right)!}}{x^5}{\left( y \right)^5} + \dfrac{{10!}}{{6!\left( {10 - 6} \right)!}}{x^4}{\left( y \right)^6} + \dfrac{{10!}}{{7!\left( {10 - 7} \right)!}}{x^3}{\left( y \right)^7} + \dfrac{{10!}}{{8!\left( {10 - 8} \right)!}}{x^2}{\left( y \right)^8} + \dfrac{{10!}}{{9!\left( {10 - 9} \right)!}}{x^1}{\left( y \right)^9} + \]\[\dfrac{{10!}}{{10!\left( {10 - 10} \right)!}}{x^0}{\left( y \right)^{10}}\],
Now simplifying the expansion we get,
\[ \Rightarrow \]\[{\left( {x + y} \right)^{10}} = {x^{10}}{\left( y \right)^0} + 10{x^9}{\left( y \right)^1} + \dfrac{{10!}}{{2!\left( 2 \right)!}}{x^8}{\left( y \right)^2} + \dfrac{{10!}}{{3!\left( 7 \right)!}}{x^7}{\left( y \right)^3} + \dfrac{{10!}}{{4!\left( 6 \right)!}}{x^6}{\left( y \right)^4} + \dfrac{{10!}}{{5!\left( 5 \right)!}}{x^5}{\left( y \right)^5} + \]\[\dfrac{{10!}}{{6!\left( 4 \right)!}}{x^4}{\left( y \right)^6} + \dfrac{{10!}}{{7!\left( 3 \right)!}}{x^3}{\left( y \right)^7} + \dfrac{{10!}}{{8!\left( 2 \right)!}}{x^2}{\left( y \right)^8} + \dfrac{{10!}}{{9!\left( 1 \right)!}}{x^1}{\left( y \right)^9} + \dfrac{{10!}}{{10!\left( 0 \right)!}}{x^0}{\left( y \right)^{10}}\]
Now applying factorial formula i.e.,\[n! = n \times (n - 1) \times \left( {n - 2} \right) \times ........ \times 3 \times 2 \times 1\],we get,
\[ \Rightarrow {\left( {x + y} \right)^{10}} = {x^{10}}{\left( y \right)^0} + 10{x^9}{\left( y \right)^1} + \dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {2 \times 1} \right)\left( {8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} \right)}}{x^8}{\left( y \right)^2} + \]\[\dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {3 \times 2 \times 1} \right)\left( {7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} \right)}}{x^7}{\left( y \right)^3} + \dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {4 \times 3 \times 2 \times 1} \right)\left( {6 \times 5 \times 4 \times 3 \times 2 \times 1} \right)}}{x^6}{\left( y \right)^4} + \]\[\dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {5 \times 4 \times 3 \times 2 \times 1} \right)\left( {5 \times 4 \times 3 \times 2 \times 1} \right)}}{x^5}{\left( y \right)^5} + \dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {6 \times 5 \times 4 \times 3 \times 2 \times 1} \right)\left( {4 \times 3 \times 2 \times 1} \right)}}{x^4}{\left( y \right)^6} + \]
\[\dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} \right)\left( {3 \times 2 \times 1} \right)}}{x^3}{\left( y \right)^7} + \dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} \right)\left( {2 \times 1} \right)}}{x^2}{\left( y \right)^8} + \]
\[\dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{\left( {9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1} \right)\left( 1 \right)}}{x^1}{\left( y \right)^9} + {x^0}{\left( y \right)^{10}}\].
Now simplifying by multiplying and dividing we get,
\[ \Rightarrow \]\[{\left( {x + y} \right)^{10}} = {x^{10}} + 10{x^9}y + 45{x^8}{y^2} + 120{x^7}{y^3} + 210{x^6}{y^4} + 252{x^5}{y^5} + 210{x^4}{y^6} + 120{x^3}{y^7} + 45{x^2}{y^8} + 10x{y^9} + {y^{10}}\]
Final Answer:
\[\therefore \]The expansion form of the given expression\[{\left( {x + y} \right)^{10}}\]is equal to\[{\left( {x + y} \right)^{10}} = {x^{10}} + 10{x^9}y + 45{x^8}{y^2} + 120{x^7}{y^3} + 210{x^6}{y^4} + 252{x^5}{y^5} + 210{x^4}{y^6} + 120{x^3}{y^7} + 45{x^2}{y^8} + 10x{y^9} + {y^{10}}\]
Note:
We use the binomial theorem to help us expand binomials to any given power without direct multiplication. As we have seen, multiplication can be time-consuming or even not possible in some cases.
Binomial expansion is given by the formula, \[{\left( {a + b} \right)^n} = {}^n{C_0}{a^n}{\left( b \right)^0} + {}^n{C_1}{a^{n - 1}}{\left( b \right)^1} + {}^n{C_2}{a^{n - 2}}{\left( b \right)^2} + {}^n{C_3}{a^{n - 3}}{\left( b \right)^3} + ....... + {}^n{C_n}{a^0}{\left( b \right)^n}\],
Where\[{}^n{C_0}\],,\[{}^n{C_2}\],\[{}^n{C_3}\]……..and\[{}^n{C_n}\]are the binomial coefficients .
According to the binomial theorem, the\[{\left( {r + 1} \right)^{th}}\]term in the expansion\[{\left( {a + b} \right)^n}\]is given by,
\[{T_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}\], the term\[{\left( {r + 1} \right)^{th}}\]is the general term and the number of terms in the expansion\[{\left( {a + b} \right)^n}\]will be equal to\[\left( {n + 1} \right)\], Where\[{}^n{C_r}\]is the binomial coefficient, the sum of the binomial coefficients will be\[{2^n}\]because we know that,\[\sum\limits_{r = 0}^n {{}^n{C_r}} = {2^n}\], thus the sum of all odd binomial coefficients is equal to the sum of all even binomial coefficients and each is equal to\[{2^{n - 1}}\], the middle term depends upon the value of\[n\].\[{}^n{C_1}\]
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

