
How do you expand \[{{\left( x-4 \right)}^{4}}\]?
Answer
543.3k+ views
Hint: In this problem, we have to expand the given expression. We can use the Binomial theorem, to expand the given expression. We can first write the general Binomial theorem and we can compare the given expression and the right-hand side expression in the Binomial theorem, to expand the given expression and we can simplify the exponents for each term of the expansion.
Complete step by step solution:
We know that the Binomial theorem is,
\[\Rightarrow {{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{{}^nC_k\left( {{a}^{n-k}}{{b}^{k}} \right)}\] …… (1)
Se know that the given expression to be expanded is,
\[\Rightarrow {{\left( x-4 \right)}^{4}}\]……. (2)
We can now compare (2) and right-hand part of (1), we get
a = x, b = -4, n = 4.
We can substitute these values in (1), we get
\[\Rightarrow {{\left( x-4 \right)}^{4}}=\sum\limits_{k=0}^{4}{\dfrac{4!}{\left( 4-k \right)!k!}\left( {{x}^{4-k}}{{\left( -4 \right)}^{k}} \right)}\]
Now we can expand the above summation, we get
\[\begin{align}
& \Rightarrow \dfrac{4!}{\left( 4-0 \right)!0!}{{\left( x \right)}^{4-0}}{{\left( -4 \right)}^{0}}+\dfrac{4!}{\left( 4-1 \right)!1!}{{\left( x \right)}^{4-1}}{{\left( -4 \right)}^{1}}+\dfrac{4!}{\left( 4-2 \right)!2!}{{\left( x \right)}^{4-2}}{{\left( -4 \right)}^{2}}+\dfrac{4!}{\left( 4-3 \right)!3!}{{\left( x \right)}^{4-3}}{{\left( -4 \right)}^{3}} \\
& +\dfrac{4!}{\left( 4-4 \right)!0!}{{\left( x \right)}^{4-4}}{{\left( -4 \right)}^{4}} \\
\end{align}\]
We can now simplify each term, we get
\[\Rightarrow 1\times {{x}^{4}}\times 1+4{{x}^{3}}\times \left( -4 \right)+6{{x}^{2}}\left( 16 \right)+4x\left( -64 \right)+256\]
We can now further simplify the above step, we get
\[\Rightarrow {{x}^{4}}-16{{x}^{3}}+96{{x}^{2}}-256x+256\]
Therefore, the expansion of \[{{\left( x-4 \right)}^{4}}\] is \[{{x}^{4}}-16{{x}^{3}}+96{{x}^{2}}-256x+256\].
Note: Students make mistakes while writing the Binomial theorem in which we should concentrate.
We can also expand this using Pascal’s triangle.
The expansion follows the rule,
\[{{\left( a+b \right)}^{n}}={{C}_{0}}{{a}^{n}}{{b}^{0}}+{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+...+{{C}_{n-1}}{{a}^{1}}{{b}^{n-1}}\]
Where, a = x, b = -4, n = 4.
The values of the coefficient from the Pascal’s triangle are
1-4-6-4-1.
Such that,
\[1{{a}^{4}}{{b}^{0}}+4{{a}^{3}}b+6{{a}^{2}}{{b}^{2}}+4a{{b}^{3}}+1{{a}^{0}}{{b}^{4}}\]
We can now substitute the values,
a = x, b = -4, n = 4.
We get,
\[\Rightarrow 1\times {{x}^{4}}\times 1+4{{x}^{3}}\times \left( -4 \right)+6{{x}^{2}}\left( 16 \right)+4x\left( -64 \right)+256\]
We can now further simplify the above step, we get
\[\Rightarrow {{x}^{4}}-16{{x}^{3}}+96{{x}^{2}}-256x+256\]
Therefore, the expansion of \[{{\left( x-4 \right)}^{4}}\] is \[{{x}^{4}}-16{{x}^{3}}+96{{x}^{2}}-256x+256\].
Complete step by step solution:
We know that the Binomial theorem is,
\[\Rightarrow {{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{{}^nC_k\left( {{a}^{n-k}}{{b}^{k}} \right)}\] …… (1)
Se know that the given expression to be expanded is,
\[\Rightarrow {{\left( x-4 \right)}^{4}}\]……. (2)
We can now compare (2) and right-hand part of (1), we get
a = x, b = -4, n = 4.
We can substitute these values in (1), we get
\[\Rightarrow {{\left( x-4 \right)}^{4}}=\sum\limits_{k=0}^{4}{\dfrac{4!}{\left( 4-k \right)!k!}\left( {{x}^{4-k}}{{\left( -4 \right)}^{k}} \right)}\]
Now we can expand the above summation, we get
\[\begin{align}
& \Rightarrow \dfrac{4!}{\left( 4-0 \right)!0!}{{\left( x \right)}^{4-0}}{{\left( -4 \right)}^{0}}+\dfrac{4!}{\left( 4-1 \right)!1!}{{\left( x \right)}^{4-1}}{{\left( -4 \right)}^{1}}+\dfrac{4!}{\left( 4-2 \right)!2!}{{\left( x \right)}^{4-2}}{{\left( -4 \right)}^{2}}+\dfrac{4!}{\left( 4-3 \right)!3!}{{\left( x \right)}^{4-3}}{{\left( -4 \right)}^{3}} \\
& +\dfrac{4!}{\left( 4-4 \right)!0!}{{\left( x \right)}^{4-4}}{{\left( -4 \right)}^{4}} \\
\end{align}\]
We can now simplify each term, we get
\[\Rightarrow 1\times {{x}^{4}}\times 1+4{{x}^{3}}\times \left( -4 \right)+6{{x}^{2}}\left( 16 \right)+4x\left( -64 \right)+256\]
We can now further simplify the above step, we get
\[\Rightarrow {{x}^{4}}-16{{x}^{3}}+96{{x}^{2}}-256x+256\]
Therefore, the expansion of \[{{\left( x-4 \right)}^{4}}\] is \[{{x}^{4}}-16{{x}^{3}}+96{{x}^{2}}-256x+256\].
Note: Students make mistakes while writing the Binomial theorem in which we should concentrate.
We can also expand this using Pascal’s triangle.
The expansion follows the rule,
\[{{\left( a+b \right)}^{n}}={{C}_{0}}{{a}^{n}}{{b}^{0}}+{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+...+{{C}_{n-1}}{{a}^{1}}{{b}^{n-1}}\]
Where, a = x, b = -4, n = 4.
The values of the coefficient from the Pascal’s triangle are
1-4-6-4-1.
Such that,
\[1{{a}^{4}}{{b}^{0}}+4{{a}^{3}}b+6{{a}^{2}}{{b}^{2}}+4a{{b}^{3}}+1{{a}^{0}}{{b}^{4}}\]
We can now substitute the values,
a = x, b = -4, n = 4.
We get,
\[\Rightarrow 1\times {{x}^{4}}\times 1+4{{x}^{3}}\times \left( -4 \right)+6{{x}^{2}}\left( 16 \right)+4x\left( -64 \right)+256\]
We can now further simplify the above step, we get
\[\Rightarrow {{x}^{4}}-16{{x}^{3}}+96{{x}^{2}}-256x+256\]
Therefore, the expansion of \[{{\left( x-4 \right)}^{4}}\] is \[{{x}^{4}}-16{{x}^{3}}+96{{x}^{2}}-256x+256\].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

