
How do you expand ${\left( {{x^2} + 3} \right)^6}$?
Answer
531.3k+ views
Hint: In this question we have to expand the given expression by using binomial formula which is given by${\left( {a + b} \right)^n} = {}^n{C_0}{a^n}{\left( b \right)^0} + {}^n{C_1}{a^{n - 1}}{\left( b \right)^1} + {}^n{C_2}{a^{n - 2}}{\left( b \right)^2} + {}^n{C_3}{a^{n - 3}}{\left( b \right)^3} + ....... + {}^n{C_n}{a^0}{\left( b \right)^n}$,
Now substituting the $a$ and $b$ values from the given expression in the question and using the formula${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$, we will get the required result.
Complete step by step answer:
Binomial expansion is given by the formula, ${\left( {a + b} \right)^n} = {}^n{C_0}{a^n}{\left( b \right)^0} + {}^n{C_1}{a^{n - 1}}{\left( b \right)^1} + {}^n{C_2}{a^{n - 2}}{\left( b \right)^2} + {}^n{C_3}{a^{n - 3}}{\left( b \right)^3} + ....... + {}^n{C_n}{a^0}{\left( b \right)^n}$,
Where${}^n{C_0}$,${}^n{C_1}$,${}^n{C_2}$,${}^n{C_3}$……..and${}^n{C_n}$are the binomial coefficients .
So, now given expression is${\left( {{x^2} + 3} \right)^6}$,
Now substituting $a$ and $b$ in the expansion, here $a = {x^2}$, $b = 3$and $n = 6$, then we get,
$ \Rightarrow {\left( {{x^2} + 3} \right)^6} = {}^6{C_0}{\left( {{x^2}} \right)^6}{\left( 3 \right)^0} + {}^6{C_1}{\left( {{x^2}} \right)^{6 - 1}}{\left( 3 \right)^1} + {}^6{C_2}{\left( {{x^2}} \right)^{6 - 2}}{\left( 3 \right)^2} + {}^6{C_3}{\left( {{x^2}} \right)^{6 - 3}}{\left( 3 \right)^3} + {}^6{C_4}{\left( {{x^2}} \right)^{6 - 4}}{\left( 3 \right)^4} + {}^6{C_5}{\left( {{x^2}} \right)^{6 - 6}}{\left( 3 \right)^5}$ $ \Rightarrow {\left( {{x^2} + 3} \right)^6} = {}^6{C_0}{\left( {{x^2}} \right)^6}{\left( 3 \right)^0} + {}^6{C_1}{\left( {{x^2}} \right)^{6 - 1}}{\left( 3 \right)^1} + {}^6{C_2}{\left( {{x^2}} \right)^{6 - 2}}{\left( 3 \right)^2} + {}^6{C_3}{\left( {{x^2}} \right)^{6 - 3}}{\left( 3 \right)^3} + {}^6{C_4}{\left( {{x^2}} \right)^{6 - 4}}{\left( 3 \right)^4}$$ + {}^6{C_5}{\left( {{x^2}} \right)^{6 - 5}}{\left( 3 \right)^5} + {}^6{C_6}{\left( {{x^2}} \right)^{6 - 6}}{\left( 3 \right)^6}$,
We know that n combination r is given by formula${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$, and now simplifying the expansion using the formula,
$ \Rightarrow {\left( {{x^2} + 3} \right)^6} = {x^{12}}{\left( 3 \right)^0} + 6{\left( {{x^2}} \right)^5}{\left( 3 \right)^1} + \dfrac{{6!}}{{2!\left( {6 - 2} \right)!}}{\left( {{x^2}} \right)^4}\left( 9 \right) + \dfrac{{6!}}{{3!\left( {6 - 3} \right)!}}{\left( {{x^2}} \right)^3}\left( {27} \right)$$ + \dfrac{{6!}}{{4!\left( {6 - 4} \right)!}}{\left( {{x^2}} \right)^2}\left( {81} \right) + \dfrac{{6!}}{{5!\left( {6 - 5} \right)!}}{\left( {{x^2}} \right)^1}\left( {243} \right) + + \dfrac{{6!}}{{6!\left( {6 - 6} \right)!}}{\left( {{x^2}} \right)^0}\left( {729} \right)$,
Now simplifying the expansion we get,
$ \Rightarrow {\left( {{x^2} + 3} \right)^6} = {x^{12}}{\left( 3 \right)^0} + 6\left( {{x^{10}}} \right){\left( 3 \right)^1} + \dfrac{{6!}}{{2!\left( 4 \right)!}}\left( {{x^8}} \right)\left( 9 \right) + \dfrac{{6!}}{{3!\left( 3 \right)!}}\left( {{x^6}} \right)\left( {27} \right)$$ + \dfrac{{6!}}{{4!\left( 2 \right)!}}\left( {{x^4}} \right)\left( {81} \right) + \dfrac{{6!}}{{5!\left( 1 \right)!}}\left( {{x^2}} \right)\left( {243} \right) + \dfrac{{6!}}{{6!\left( 0 \right)!}}\left( {{x^0}} \right)\left( {729} \right)$,
Now applying factorial formula i.e.,$n! = n \times (n - 1) \times \left( {n - 2} \right) \times ........ \times 3 \times 2 \times 1$,we get,
$ \Rightarrow {\left( {{x^2} + 3} \right)^6} = {x^{12}}{\left( 3 \right)^0} + 6\left( {{x^{10}}} \right){\left( 3 \right)^1} + \dfrac{{1 \times 2 \times 3 \times 4 \times 5 \times 6}}{{\left( {1 \times 2} \right)\left( {1 \times 2 \times 3 \times 4} \right)}}\left( {{x^8}} \right)\left( 9 \right) + \dfrac{{1 \times 2 \times 3 \times 4 \times 5 \times 6}}{{\left( {1 \times 2 \times 3} \right)\left( {1 \times 2 \times 3} \right)}}\left( {{x^6}} \right)\left( {27} \right)$
$ + \dfrac{{1 \times 2 \times 3 \times 4 \times 5 \times 6}}{{\left( {1 \times 2 \times 3 \times 4} \right)\left( {1 \times 2} \right)}}\left( {{x^4}} \right)\left( {81} \right) + \dfrac{{1 \times 2 \times 3 \times 4 \times 5 \times 6}}{{\left( {1 \times 2 \times 3 \times 4 \times 5} \right)\left( 1 \right)}}\left( {{x^2}} \right)\left( {243} \right) + \dfrac{{1 \times 2 \times 3 \times 4 \times 5 \times 6}}{{\left( {1 \times 2 \times 3 \times 4 \times 5 \times 6} \right)\left( 1 \right)}}\left( {729} \right)$,
Now simplifying the expansion we get,
$ \Rightarrow {\left( {{x^2} + 3} \right)^6} = {x^{12}}{\left( 3 \right)^0} + 6\left( {{x^{10}}} \right){\left( 3 \right)^1} + \left( {5 \times 3} \right)\left( {{x^8}} \right)\left( 9 \right) + \left( {4 \times 5} \right)\left( {{x^6}} \right)\left( {27} \right) + \left( {5 \times 3} \right)\left( {{x^4}} \right)\left( {81} \right)$
$ + \left( 6 \right)\left( {{x^2}} \right)\left( {243} \right) + \left( 1 \right)\left( {729} \right)$,
Now simplifying by multiplying we get,
$ \Rightarrow {\left( {{x^2} + 3} \right)^6} = {x^{12}} + 6\left( {{x^{10}}} \right)\left( 3 \right) + \left( {15} \right){x^8}\left( 9 \right) + \left( {20} \right)\left( {{x^6}} \right)\left( {27} \right) + \left( {15} \right)\left( {{x^4}} \right)\left( {81} \right)$$ + \left( 6 \right)\left( {{x^2}} \right)\left( {243} \right) + \left( 1 \right)\left( {729} \right)$,
Now final simplification we get,
$ \Rightarrow {\left( {{x^2} + 3} \right)^6} = {x^{12}} + 18{x^{10}} + 135{x^8} + 540{x^6} + 1215{x^4} + 1458{x^2} + 729$.
So, the binomial expansion is ${\left( {{x^2} + 3} \right)^6} = {x^{12}} + 18{x^{10}} + 135{x^8} + 540{x^6} + 1215{x^4} + 1458{x^2} + 729$.
$\therefore $ The expansion form of the given expression ${\left( {{x^2} + 3} \right)^6}$using binomial expansion will be equal to${\left( {{x^2} + 3} \right)^6} = {x^{12}} + 18{x^{10}} + 135{x^8} + 540{x^6} + 1215{x^4} + 1458{x^2} + 729$.
Note: We use the binomial theorem to help us expand binomials to any given power without direct multiplication. As we have seen, multiplication can be time-consuming or even not possible in some cases.
The binomial theorem is an algebraic method of expanding a binomial expression. Essentially, it demonstrates what happens when you multiply a binomial by itself. For example, consider the expression${\left( {2x + 5} \right)^9}$. It would take quite a long time to multiply the binomial$2x + 5$out nine times. The binomial theorem provides a short cut, or a formula that yields the expanded form of this expression.
Now substituting the $a$ and $b$ values from the given expression in the question and using the formula${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$, we will get the required result.
Complete step by step answer:
Binomial expansion is given by the formula, ${\left( {a + b} \right)^n} = {}^n{C_0}{a^n}{\left( b \right)^0} + {}^n{C_1}{a^{n - 1}}{\left( b \right)^1} + {}^n{C_2}{a^{n - 2}}{\left( b \right)^2} + {}^n{C_3}{a^{n - 3}}{\left( b \right)^3} + ....... + {}^n{C_n}{a^0}{\left( b \right)^n}$,
Where${}^n{C_0}$,${}^n{C_1}$,${}^n{C_2}$,${}^n{C_3}$……..and${}^n{C_n}$are the binomial coefficients .
So, now given expression is${\left( {{x^2} + 3} \right)^6}$,
Now substituting $a$ and $b$ in the expansion, here $a = {x^2}$, $b = 3$and $n = 6$, then we get,
$ \Rightarrow {\left( {{x^2} + 3} \right)^6} = {}^6{C_0}{\left( {{x^2}} \right)^6}{\left( 3 \right)^0} + {}^6{C_1}{\left( {{x^2}} \right)^{6 - 1}}{\left( 3 \right)^1} + {}^6{C_2}{\left( {{x^2}} \right)^{6 - 2}}{\left( 3 \right)^2} + {}^6{C_3}{\left( {{x^2}} \right)^{6 - 3}}{\left( 3 \right)^3} + {}^6{C_4}{\left( {{x^2}} \right)^{6 - 4}}{\left( 3 \right)^4} + {}^6{C_5}{\left( {{x^2}} \right)^{6 - 6}}{\left( 3 \right)^5}$ $ \Rightarrow {\left( {{x^2} + 3} \right)^6} = {}^6{C_0}{\left( {{x^2}} \right)^6}{\left( 3 \right)^0} + {}^6{C_1}{\left( {{x^2}} \right)^{6 - 1}}{\left( 3 \right)^1} + {}^6{C_2}{\left( {{x^2}} \right)^{6 - 2}}{\left( 3 \right)^2} + {}^6{C_3}{\left( {{x^2}} \right)^{6 - 3}}{\left( 3 \right)^3} + {}^6{C_4}{\left( {{x^2}} \right)^{6 - 4}}{\left( 3 \right)^4}$$ + {}^6{C_5}{\left( {{x^2}} \right)^{6 - 5}}{\left( 3 \right)^5} + {}^6{C_6}{\left( {{x^2}} \right)^{6 - 6}}{\left( 3 \right)^6}$,
We know that n combination r is given by formula${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$, and now simplifying the expansion using the formula,
$ \Rightarrow {\left( {{x^2} + 3} \right)^6} = {x^{12}}{\left( 3 \right)^0} + 6{\left( {{x^2}} \right)^5}{\left( 3 \right)^1} + \dfrac{{6!}}{{2!\left( {6 - 2} \right)!}}{\left( {{x^2}} \right)^4}\left( 9 \right) + \dfrac{{6!}}{{3!\left( {6 - 3} \right)!}}{\left( {{x^2}} \right)^3}\left( {27} \right)$$ + \dfrac{{6!}}{{4!\left( {6 - 4} \right)!}}{\left( {{x^2}} \right)^2}\left( {81} \right) + \dfrac{{6!}}{{5!\left( {6 - 5} \right)!}}{\left( {{x^2}} \right)^1}\left( {243} \right) + + \dfrac{{6!}}{{6!\left( {6 - 6} \right)!}}{\left( {{x^2}} \right)^0}\left( {729} \right)$,
Now simplifying the expansion we get,
$ \Rightarrow {\left( {{x^2} + 3} \right)^6} = {x^{12}}{\left( 3 \right)^0} + 6\left( {{x^{10}}} \right){\left( 3 \right)^1} + \dfrac{{6!}}{{2!\left( 4 \right)!}}\left( {{x^8}} \right)\left( 9 \right) + \dfrac{{6!}}{{3!\left( 3 \right)!}}\left( {{x^6}} \right)\left( {27} \right)$$ + \dfrac{{6!}}{{4!\left( 2 \right)!}}\left( {{x^4}} \right)\left( {81} \right) + \dfrac{{6!}}{{5!\left( 1 \right)!}}\left( {{x^2}} \right)\left( {243} \right) + \dfrac{{6!}}{{6!\left( 0 \right)!}}\left( {{x^0}} \right)\left( {729} \right)$,
Now applying factorial formula i.e.,$n! = n \times (n - 1) \times \left( {n - 2} \right) \times ........ \times 3 \times 2 \times 1$,we get,
$ \Rightarrow {\left( {{x^2} + 3} \right)^6} = {x^{12}}{\left( 3 \right)^0} + 6\left( {{x^{10}}} \right){\left( 3 \right)^1} + \dfrac{{1 \times 2 \times 3 \times 4 \times 5 \times 6}}{{\left( {1 \times 2} \right)\left( {1 \times 2 \times 3 \times 4} \right)}}\left( {{x^8}} \right)\left( 9 \right) + \dfrac{{1 \times 2 \times 3 \times 4 \times 5 \times 6}}{{\left( {1 \times 2 \times 3} \right)\left( {1 \times 2 \times 3} \right)}}\left( {{x^6}} \right)\left( {27} \right)$
$ + \dfrac{{1 \times 2 \times 3 \times 4 \times 5 \times 6}}{{\left( {1 \times 2 \times 3 \times 4} \right)\left( {1 \times 2} \right)}}\left( {{x^4}} \right)\left( {81} \right) + \dfrac{{1 \times 2 \times 3 \times 4 \times 5 \times 6}}{{\left( {1 \times 2 \times 3 \times 4 \times 5} \right)\left( 1 \right)}}\left( {{x^2}} \right)\left( {243} \right) + \dfrac{{1 \times 2 \times 3 \times 4 \times 5 \times 6}}{{\left( {1 \times 2 \times 3 \times 4 \times 5 \times 6} \right)\left( 1 \right)}}\left( {729} \right)$,
Now simplifying the expansion we get,
$ \Rightarrow {\left( {{x^2} + 3} \right)^6} = {x^{12}}{\left( 3 \right)^0} + 6\left( {{x^{10}}} \right){\left( 3 \right)^1} + \left( {5 \times 3} \right)\left( {{x^8}} \right)\left( 9 \right) + \left( {4 \times 5} \right)\left( {{x^6}} \right)\left( {27} \right) + \left( {5 \times 3} \right)\left( {{x^4}} \right)\left( {81} \right)$
$ + \left( 6 \right)\left( {{x^2}} \right)\left( {243} \right) + \left( 1 \right)\left( {729} \right)$,
Now simplifying by multiplying we get,
$ \Rightarrow {\left( {{x^2} + 3} \right)^6} = {x^{12}} + 6\left( {{x^{10}}} \right)\left( 3 \right) + \left( {15} \right){x^8}\left( 9 \right) + \left( {20} \right)\left( {{x^6}} \right)\left( {27} \right) + \left( {15} \right)\left( {{x^4}} \right)\left( {81} \right)$$ + \left( 6 \right)\left( {{x^2}} \right)\left( {243} \right) + \left( 1 \right)\left( {729} \right)$,
Now final simplification we get,
$ \Rightarrow {\left( {{x^2} + 3} \right)^6} = {x^{12}} + 18{x^{10}} + 135{x^8} + 540{x^6} + 1215{x^4} + 1458{x^2} + 729$.
So, the binomial expansion is ${\left( {{x^2} + 3} \right)^6} = {x^{12}} + 18{x^{10}} + 135{x^8} + 540{x^6} + 1215{x^4} + 1458{x^2} + 729$.
$\therefore $ The expansion form of the given expression ${\left( {{x^2} + 3} \right)^6}$using binomial expansion will be equal to${\left( {{x^2} + 3} \right)^6} = {x^{12}} + 18{x^{10}} + 135{x^8} + 540{x^6} + 1215{x^4} + 1458{x^2} + 729$.
Note: We use the binomial theorem to help us expand binomials to any given power without direct multiplication. As we have seen, multiplication can be time-consuming or even not possible in some cases.
The binomial theorem is an algebraic method of expanding a binomial expression. Essentially, it demonstrates what happens when you multiply a binomial by itself. For example, consider the expression${\left( {2x + 5} \right)^9}$. It would take quite a long time to multiply the binomial$2x + 5$out nine times. The binomial theorem provides a short cut, or a formula that yields the expanded form of this expression.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

