
How do you expand ${{\left( 3x-2y \right)}^{5}}$?
Answer
477.3k+ views
Hint: We first define the general form of binomial expansion for the indices value of n where ${{\left( a-b \right)}^{n}}={{a}^{n}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}-.....+{{\left( -1 \right)}^{r}}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+.....+{{\left( -1 \right)}^{n}}{{b}^{n}}$. We replace the values with $a=3x,b=2y$ and $n=5$. Then we use the formula of combinational ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$ to find the coefficients. We put the values and get the final solution for the expansion.
Complete step by step answer:
We use the formula for binomial expansion where we have
${{\left( a-b \right)}^{n}}={{a}^{n}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}-.....+{{\left( -1 \right)}^{r}}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+.....+{{\left( -1 \right)}^{n}}{{b}^{n}}$.
The general term of the expansion is ${{t}_{r+1}}$, the ${{\left( r+1 \right)}^{th}}$ term of the series where ${{t}_{r+1}}={{\left( -1 \right)}^{r}}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}$.
We use the binomial expansion for the value of $n=5$.
We also replace the values for $a=3x,b=2y$.
We put the values in the main equation of expansion and get
\[{{\left( 3x-2y \right)}^{5}}={{\left( 3x \right)}^{5}}-{}^{5}{{C}_{1}}{{\left( 3x \right)}^{5-1}}{{\left( 2y \right)}^{1}}+{}^{5}{{C}_{2}}{{\left( 3x \right)}^{5-2}}{{\left( 2y \right)}^{2}}-{}^{5}{{C}_{3}}{{\left( 3x \right)}^{5-3}}{{\left( 2y \right)}^{3}}+{}^{5}{{C}_{4}}{{\left( 3x \right)}^{5-4}}{{\left( 2y \right)}^{4}}-{{\left( 2y \right)}^{5}}\]
Now we know that ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$.
Putting the respective values, we get \[{}^{5}{{C}_{2}}={}^{5}{{C}_{3}}=\dfrac{5!}{2!\times 3!}=10;{}^{5}{{C}_{1}}={}^{5}{{C}_{4}}=5\].
Therefore, the expansion becomes
\[{{\left( 3x-2y \right)}^{5}}=243{{x}^{5}}-810{{x}^{4}}y+1080{{x}^{3}}{{y}^{2}}-720{{x}^{2}}{{y}^{3}}+240x{{y}^{4}}-32{{y}^{5}}\].
The expansion form of ${{\left( 3x-2y \right)}^{5}}$ is \[243{{x}^{5}}-810{{x}^{4}}y+1080{{x}^{3}}{{y}^{2}}-720{{x}^{2}}{{y}^{3}}+240x{{y}^{4}}-32{{y}^{5}}\].
Note: We can also use the concept of ${{\left( 3x-2y \right)}^{5}}={{\left( 3x-2y \right)}^{3}}{{\left( 3x-2y \right)}^{2}}$. Then we use the cubic and quadratic formulas of ${{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}$ and ${{a}^{2}}-2ab+{{b}^{2}}={{\left( a-b \right)}^{2}}$ respectively. We multiply the values of the expansion to get the same solution.
Complete step by step answer:
We use the formula for binomial expansion where we have
${{\left( a-b \right)}^{n}}={{a}^{n}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}-.....+{{\left( -1 \right)}^{r}}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+.....+{{\left( -1 \right)}^{n}}{{b}^{n}}$.
The general term of the expansion is ${{t}_{r+1}}$, the ${{\left( r+1 \right)}^{th}}$ term of the series where ${{t}_{r+1}}={{\left( -1 \right)}^{r}}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}$.
We use the binomial expansion for the value of $n=5$.
We also replace the values for $a=3x,b=2y$.
We put the values in the main equation of expansion and get
\[{{\left( 3x-2y \right)}^{5}}={{\left( 3x \right)}^{5}}-{}^{5}{{C}_{1}}{{\left( 3x \right)}^{5-1}}{{\left( 2y \right)}^{1}}+{}^{5}{{C}_{2}}{{\left( 3x \right)}^{5-2}}{{\left( 2y \right)}^{2}}-{}^{5}{{C}_{3}}{{\left( 3x \right)}^{5-3}}{{\left( 2y \right)}^{3}}+{}^{5}{{C}_{4}}{{\left( 3x \right)}^{5-4}}{{\left( 2y \right)}^{4}}-{{\left( 2y \right)}^{5}}\]
Now we know that ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$.
Putting the respective values, we get \[{}^{5}{{C}_{2}}={}^{5}{{C}_{3}}=\dfrac{5!}{2!\times 3!}=10;{}^{5}{{C}_{1}}={}^{5}{{C}_{4}}=5\].
Therefore, the expansion becomes
\[{{\left( 3x-2y \right)}^{5}}=243{{x}^{5}}-810{{x}^{4}}y+1080{{x}^{3}}{{y}^{2}}-720{{x}^{2}}{{y}^{3}}+240x{{y}^{4}}-32{{y}^{5}}\].
The expansion form of ${{\left( 3x-2y \right)}^{5}}$ is \[243{{x}^{5}}-810{{x}^{4}}y+1080{{x}^{3}}{{y}^{2}}-720{{x}^{2}}{{y}^{3}}+240x{{y}^{4}}-32{{y}^{5}}\].
Note: We can also use the concept of ${{\left( 3x-2y \right)}^{5}}={{\left( 3x-2y \right)}^{3}}{{\left( 3x-2y \right)}^{2}}$. Then we use the cubic and quadratic formulas of ${{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}}$ and ${{a}^{2}}-2ab+{{b}^{2}}={{\left( a-b \right)}^{2}}$ respectively. We multiply the values of the expansion to get the same solution.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

