
How do you expand ${{\left( 3x+2y \right)}^{4}}$ ?
Answer
563.1k+ views
Hint: We can expand the given expression ${{\left( 3x+2y \right)}^{4}}$ by first taking the square of $\left( 3x+2y \right)$ and then take the square of the result of the square of $\left( 3x+2y \right)$. We will take the square of $\left( 3x+2y \right)$ by using the algebraic identity which is equal to ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$. Then when you take the second time square of $\left( 3x+2y \right)$, you will need the algebraic identity which is equal to: ${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right)$.
Complete step by step answer:
The algebraic expression given in the above problem is as follows:
${{\left( 3x+2y \right)}^{4}}$
We can rewrite the above expression as follows:
${{\left( {{\left( 3x+2y \right)}^{2}} \right)}^{2}}$
Now, taking the square of $\left( 3x+2y \right)$ using the following algebraic identity i.e.:
${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
When using the above algebraic identity, substituting $''a=3x''$ and $''b=2y''$ in the above identity we get,
$\begin{align}
& {{\left( 3x+2y \right)}^{2}}={{\left( 3x \right)}^{2}}+2\left( 3x \right)\left( 2y \right)+{{\left( 2y \right)}^{2}} \\
& \Rightarrow {{\left( 3x+2y \right)}^{2}}=9{{x}^{2}}+12xy+4{{y}^{2}} \\
\end{align}$
Now, taking square on both the sides we get,
${{\left( {{\left( 3x+2y \right)}^{2}} \right)}^{2}}={{\left( 9{{x}^{2}}+12xy+4{{y}^{2}} \right)}^{2}}$ ………. Eq. (1)
Applying the following algebraic identity on R.H.S of the above equation we get,
${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right)$
Substituting $a=9{{x}^{2}},b=12xy,c=4{{y}^{2}}$ in the above equation we get,
${{\left( 9{{x}^{2}}+12xy+4{{y}^{2}} \right)}^{2}}={{\left( 9{{x}^{2}} \right)}^{2}}+{{\left( 12xy \right)}^{2}}+{{\left( 4{{y}^{2}} \right)}^{2}}+2\left( \left( 9{{x}^{2}} \right)\left( 12xy \right)+\left( 12xy \right)\left( 4{{y}^{2}} \right)+\left( 4{{y}^{2}} \right)\left( 9{{x}^{2}} \right) \right)$
Multiplying 2 with the terms written in the bracket we get,
$\begin{align}
& \Rightarrow {{\left( 9{{x}^{2}}+12xy+4{{y}^{2}} \right)}^{2}}=81{{x}^{4}}+144{{x}^{2}}{{y}^{2}}+16{{y}^{4}}+2\left( 108{{x}^{3}}y+48x{{y}^{3}}+36{{x}^{2}}{{y}^{2}} \right) \\
& \Rightarrow {{\left( 9{{x}^{2}}+12xy+4{{y}^{2}} \right)}^{2}}=81{{x}^{4}}+144{{x}^{2}}{{y}^{2}}+16{{y}^{4}}+216{{x}^{3}}y+96x{{y}^{3}}+72{{x}^{2}}{{y}^{2}} \\
\end{align}$
Adding the coefficients of ${{x}^{2}}{{y}^{2}}$ in the R.H.S of the above equation we get,
$\begin{align}
& {{\left( 9{{x}^{2}}+12xy+4{{y}^{2}} \right)}^{2}}=81{{x}^{4}}+\left( 144+72 \right){{x}^{2}}{{y}^{2}}+16{{y}^{4}}+216{{x}^{3}}y+96x{{y}^{3}} \\
& \Rightarrow {{\left( 9{{x}^{2}}+12xy+4{{y}^{2}} \right)}^{2}}=81{{x}^{4}}+216{{x}^{2}}{{y}^{2}}+16{{y}^{4}}+216{{x}^{3}}y+96x{{y}^{3}} \\
\end{align}$
Substituting the above value in eq. (1) we get,
${{\left( {{\left( 3x+2y \right)}^{2}} \right)}^{2}}=$$81{{x}^{4}}+216{{x}^{2}}{{y}^{2}}+16{{y}^{4}}+216{{x}^{3}}y+96x{{y}^{3}}$
Hence, the expansion of ${{\left( 3x+2y \right)}^{4}}$ is equal to:
$81{{x}^{4}}+216{{x}^{2}}{{y}^{2}}+16{{y}^{4}}+216{{x}^{3}}y+96x{{y}^{3}}$
Note: The alternate approach to the above problem is as follows:
We know that the binomial expansion of:
${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+......+{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}$
So, using the above expansion in expanding ${{\left( 3x+2y \right)}^{4}}$ we get,
${{\left( 3x+2y \right)}^{4}}={}^{4}{{C}_{0}}{{\left( 3x \right)}^{4}}{{\left( 2y \right)}^{0}}+{}^{4}{{C}_{1}}{{\left( 3x \right)}^{3}}{{\left( 2y \right)}^{1}}+{}^{4}{{C}_{2}}{{\left( 3x \right)}^{2}}{{\left( 2y \right)}^{2}}+{}^{4}{{C}_{3}}{{\left( 3x \right)}^{1}}{{\left( 2y \right)}^{3}}+{}^{4}{{C}_{4}}{{\left( 3x \right)}^{0}}{{\left( 2y \right)}^{4}}$ We know that: ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ so using this expansion in the above equation we get,
$\begin{align}
& {{\left( 3x+2y \right)}^{4}}=\dfrac{4!}{0!\left( 4-0 \right)!}{{\left( 3x \right)}^{4}}{{\left( 2y \right)}^{0}}+\dfrac{4!}{1!\left( 4-1 \right)!}{{\left( 3x \right)}^{3}}{{\left( 2y \right)}^{1}}+\dfrac{4!}{2!\left( 4-2 \right)!}{{\left( 3x \right)}^{2}}{{\left( 2y \right)}^{2}}+\dfrac{4!}{3!\left( 4-3 \right)!}{{\left( 3x \right)}^{1}}{{\left( 2y \right)}^{3}}+\dfrac{4!}{4!\left( 4-4 \right)!}{{\left( 3x \right)}^{0}}{{\left( 2y \right)}^{4}} \\
& \Rightarrow {{\left( 3x+2y \right)}^{4}}=\dfrac{4!}{0!\left( 4 \right)!}{{\left( 3x \right)}^{4}}{{\left( 2y \right)}^{0}}+\dfrac{4!}{1!\left( 3 \right)!}{{\left( 3x \right)}^{3}}{{\left( 2y \right)}^{1}}+\dfrac{4!}{2!\left( 2 \right)!}{{\left( 3x \right)}^{2}}{{\left( 2y \right)}^{2}}+\dfrac{4!}{3!\left( 1 \right)!}{{\left( 3x \right)}^{1}}{{\left( 2y \right)}^{3}}+\dfrac{4!}{4!\left( 0 \right)!}{{\left( 3x \right)}^{0}}{{\left( 2y \right)}^{4}} \\
\end{align}$
We also know that the value of $0!=1$ so using this relation in the above we get,
$\begin{align}
& {{\left( 3x+2y \right)}^{4}}=\dfrac{4!}{\left( 1 \right)\left( 4 \right)!}{{\left( 3x \right)}^{4}}{{\left( 2y \right)}^{0}}+\dfrac{4!}{1!\left( 3 \right)!}{{\left( 3x \right)}^{3}}{{\left( 2y \right)}^{1}}+\dfrac{4!}{2!\left( 2 \right)!}{{\left( 3x \right)}^{2}}{{\left( 2y \right)}^{2}}+\dfrac{4!}{3!\left( 1 \right)!}{{\left( 3x \right)}^{1}}{{\left( 2y \right)}^{3}}+\dfrac{4!}{4!\left( 1 \right)}{{\left( 3x \right)}^{0}}{{\left( 2y \right)}^{4}} \\
& \Rightarrow {{\left( 3x+2y \right)}^{4}}=\dfrac{1}{\left( 1 \right)1}{{\left( 3x \right)}^{4}}{{\left( 2y \right)}^{0}}+\dfrac{4.3!}{1!\left( 3 \right)!}{{\left( 3x \right)}^{3}}{{\left( 2y \right)}^{1}}+\dfrac{4.3.2!}{2!\left( 2 \right)!}{{\left( 3x \right)}^{2}}{{\left( 2y \right)}^{2}}+\dfrac{4.3!}{3!\left( 1 \right)!}{{\left( 3x \right)}^{1}}{{\left( 2y \right)}^{3}}+\dfrac{4!}{4!\left( 1 \right)}{{\left( 3x \right)}^{0}}{{\left( 2y \right)}^{4}} \\
\end{align}$
In the above, $3!,4!,2!$ will be cancelled out from the numerator and the denominator in the R.H.S of the above equation we get,
$\begin{align}
& {{\left( 3x+2y \right)}^{4}}=81{{x}^{4}}+\dfrac{4}{1}54{{x}^{3}}y+\dfrac{4.3}{2.1}36{{x}^{2}}{{y}^{2}}+\dfrac{4}{\left( 1 \right)}24x{{y}^{3}}+\dfrac{1}{\left( 1 \right)}16{{y}^{4}} \\
& \Rightarrow {{\left( 3x+2y \right)}^{4}}=81{{x}^{4}}+216{{x}^{3}}y+216{{x}^{2}}{{y}^{2}}+96x{{y}^{3}}+16{{y}^{4}} \\
\end{align}$
Complete step by step answer:
The algebraic expression given in the above problem is as follows:
${{\left( 3x+2y \right)}^{4}}$
We can rewrite the above expression as follows:
${{\left( {{\left( 3x+2y \right)}^{2}} \right)}^{2}}$
Now, taking the square of $\left( 3x+2y \right)$ using the following algebraic identity i.e.:
${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
When using the above algebraic identity, substituting $''a=3x''$ and $''b=2y''$ in the above identity we get,
$\begin{align}
& {{\left( 3x+2y \right)}^{2}}={{\left( 3x \right)}^{2}}+2\left( 3x \right)\left( 2y \right)+{{\left( 2y \right)}^{2}} \\
& \Rightarrow {{\left( 3x+2y \right)}^{2}}=9{{x}^{2}}+12xy+4{{y}^{2}} \\
\end{align}$
Now, taking square on both the sides we get,
${{\left( {{\left( 3x+2y \right)}^{2}} \right)}^{2}}={{\left( 9{{x}^{2}}+12xy+4{{y}^{2}} \right)}^{2}}$ ………. Eq. (1)
Applying the following algebraic identity on R.H.S of the above equation we get,
${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right)$
Substituting $a=9{{x}^{2}},b=12xy,c=4{{y}^{2}}$ in the above equation we get,
${{\left( 9{{x}^{2}}+12xy+4{{y}^{2}} \right)}^{2}}={{\left( 9{{x}^{2}} \right)}^{2}}+{{\left( 12xy \right)}^{2}}+{{\left( 4{{y}^{2}} \right)}^{2}}+2\left( \left( 9{{x}^{2}} \right)\left( 12xy \right)+\left( 12xy \right)\left( 4{{y}^{2}} \right)+\left( 4{{y}^{2}} \right)\left( 9{{x}^{2}} \right) \right)$
Multiplying 2 with the terms written in the bracket we get,
$\begin{align}
& \Rightarrow {{\left( 9{{x}^{2}}+12xy+4{{y}^{2}} \right)}^{2}}=81{{x}^{4}}+144{{x}^{2}}{{y}^{2}}+16{{y}^{4}}+2\left( 108{{x}^{3}}y+48x{{y}^{3}}+36{{x}^{2}}{{y}^{2}} \right) \\
& \Rightarrow {{\left( 9{{x}^{2}}+12xy+4{{y}^{2}} \right)}^{2}}=81{{x}^{4}}+144{{x}^{2}}{{y}^{2}}+16{{y}^{4}}+216{{x}^{3}}y+96x{{y}^{3}}+72{{x}^{2}}{{y}^{2}} \\
\end{align}$
Adding the coefficients of ${{x}^{2}}{{y}^{2}}$ in the R.H.S of the above equation we get,
$\begin{align}
& {{\left( 9{{x}^{2}}+12xy+4{{y}^{2}} \right)}^{2}}=81{{x}^{4}}+\left( 144+72 \right){{x}^{2}}{{y}^{2}}+16{{y}^{4}}+216{{x}^{3}}y+96x{{y}^{3}} \\
& \Rightarrow {{\left( 9{{x}^{2}}+12xy+4{{y}^{2}} \right)}^{2}}=81{{x}^{4}}+216{{x}^{2}}{{y}^{2}}+16{{y}^{4}}+216{{x}^{3}}y+96x{{y}^{3}} \\
\end{align}$
Substituting the above value in eq. (1) we get,
${{\left( {{\left( 3x+2y \right)}^{2}} \right)}^{2}}=$$81{{x}^{4}}+216{{x}^{2}}{{y}^{2}}+16{{y}^{4}}+216{{x}^{3}}y+96x{{y}^{3}}$
Hence, the expansion of ${{\left( 3x+2y \right)}^{4}}$ is equal to:
$81{{x}^{4}}+216{{x}^{2}}{{y}^{2}}+16{{y}^{4}}+216{{x}^{3}}y+96x{{y}^{3}}$
Note: The alternate approach to the above problem is as follows:
We know that the binomial expansion of:
${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+......+{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}$
So, using the above expansion in expanding ${{\left( 3x+2y \right)}^{4}}$ we get,
${{\left( 3x+2y \right)}^{4}}={}^{4}{{C}_{0}}{{\left( 3x \right)}^{4}}{{\left( 2y \right)}^{0}}+{}^{4}{{C}_{1}}{{\left( 3x \right)}^{3}}{{\left( 2y \right)}^{1}}+{}^{4}{{C}_{2}}{{\left( 3x \right)}^{2}}{{\left( 2y \right)}^{2}}+{}^{4}{{C}_{3}}{{\left( 3x \right)}^{1}}{{\left( 2y \right)}^{3}}+{}^{4}{{C}_{4}}{{\left( 3x \right)}^{0}}{{\left( 2y \right)}^{4}}$ We know that: ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ so using this expansion in the above equation we get,
$\begin{align}
& {{\left( 3x+2y \right)}^{4}}=\dfrac{4!}{0!\left( 4-0 \right)!}{{\left( 3x \right)}^{4}}{{\left( 2y \right)}^{0}}+\dfrac{4!}{1!\left( 4-1 \right)!}{{\left( 3x \right)}^{3}}{{\left( 2y \right)}^{1}}+\dfrac{4!}{2!\left( 4-2 \right)!}{{\left( 3x \right)}^{2}}{{\left( 2y \right)}^{2}}+\dfrac{4!}{3!\left( 4-3 \right)!}{{\left( 3x \right)}^{1}}{{\left( 2y \right)}^{3}}+\dfrac{4!}{4!\left( 4-4 \right)!}{{\left( 3x \right)}^{0}}{{\left( 2y \right)}^{4}} \\
& \Rightarrow {{\left( 3x+2y \right)}^{4}}=\dfrac{4!}{0!\left( 4 \right)!}{{\left( 3x \right)}^{4}}{{\left( 2y \right)}^{0}}+\dfrac{4!}{1!\left( 3 \right)!}{{\left( 3x \right)}^{3}}{{\left( 2y \right)}^{1}}+\dfrac{4!}{2!\left( 2 \right)!}{{\left( 3x \right)}^{2}}{{\left( 2y \right)}^{2}}+\dfrac{4!}{3!\left( 1 \right)!}{{\left( 3x \right)}^{1}}{{\left( 2y \right)}^{3}}+\dfrac{4!}{4!\left( 0 \right)!}{{\left( 3x \right)}^{0}}{{\left( 2y \right)}^{4}} \\
\end{align}$
We also know that the value of $0!=1$ so using this relation in the above we get,
$\begin{align}
& {{\left( 3x+2y \right)}^{4}}=\dfrac{4!}{\left( 1 \right)\left( 4 \right)!}{{\left( 3x \right)}^{4}}{{\left( 2y \right)}^{0}}+\dfrac{4!}{1!\left( 3 \right)!}{{\left( 3x \right)}^{3}}{{\left( 2y \right)}^{1}}+\dfrac{4!}{2!\left( 2 \right)!}{{\left( 3x \right)}^{2}}{{\left( 2y \right)}^{2}}+\dfrac{4!}{3!\left( 1 \right)!}{{\left( 3x \right)}^{1}}{{\left( 2y \right)}^{3}}+\dfrac{4!}{4!\left( 1 \right)}{{\left( 3x \right)}^{0}}{{\left( 2y \right)}^{4}} \\
& \Rightarrow {{\left( 3x+2y \right)}^{4}}=\dfrac{1}{\left( 1 \right)1}{{\left( 3x \right)}^{4}}{{\left( 2y \right)}^{0}}+\dfrac{4.3!}{1!\left( 3 \right)!}{{\left( 3x \right)}^{3}}{{\left( 2y \right)}^{1}}+\dfrac{4.3.2!}{2!\left( 2 \right)!}{{\left( 3x \right)}^{2}}{{\left( 2y \right)}^{2}}+\dfrac{4.3!}{3!\left( 1 \right)!}{{\left( 3x \right)}^{1}}{{\left( 2y \right)}^{3}}+\dfrac{4!}{4!\left( 1 \right)}{{\left( 3x \right)}^{0}}{{\left( 2y \right)}^{4}} \\
\end{align}$
In the above, $3!,4!,2!$ will be cancelled out from the numerator and the denominator in the R.H.S of the above equation we get,
$\begin{align}
& {{\left( 3x+2y \right)}^{4}}=81{{x}^{4}}+\dfrac{4}{1}54{{x}^{3}}y+\dfrac{4.3}{2.1}36{{x}^{2}}{{y}^{2}}+\dfrac{4}{\left( 1 \right)}24x{{y}^{3}}+\dfrac{1}{\left( 1 \right)}16{{y}^{4}} \\
& \Rightarrow {{\left( 3x+2y \right)}^{4}}=81{{x}^{4}}+216{{x}^{3}}y+216{{x}^{2}}{{y}^{2}}+96x{{y}^{3}}+16{{y}^{4}} \\
\end{align}$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

