
How do you expand ${(c - d)^7}$?
Answer
477k+ views
Hint: Here we have to expand the expression which is in the power of $7$. We will use the binomial theorem to expand the expression ${(c - d)^7}$. Binomial theorem states that ${(x + y)^7} = \sum\limits_{k = 0}^n {^n{C_k}} {x^{n - k}}{y^k} = {x^n}{ + ^n}{C_1}{x^{n - 1}}y{ + ^n}{C_2}{x^{n - 2}}{y^2} + \ldots { + ^n}{C_n}{x^{n - n}}{y^n}$.For calculating $^n{C_k}$ we will use the formula i.e., $^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$.
Complete step by step answer:
Here we have to expand the expression which is in the power of $7$. As the power of expression is $7$ the expansion of terms becomes very lengthy and tedious to calculate. It can be easily calculated with the help of the Binomial theorem. Binomial theorem is the process of expanding an expression that has been raised to finite power.
Binomial theorem states that we can expand the power ${(x + y)^n}$ into a sum involving terms in the form of $a{x^b}{y^c}$, where exponents $b$ and $c$ are non-negative integers with $b + c = n$ and $a$ is a coefficient of each term which is a specific positive integer depending on $n$ and $b$.
The theorem is given by the formula ${(x + y)^7} = \sum\limits_{k = 0}^n {^n{C_k}} {x^{n - k}}{y^k} = {x^n}{ + ^n}{C_1}{x^{n - 1}}y{ + ^n}{C_2}{x^{n - 2}}{y^2} + \ldots { + ^n}{C_n}{x^{n - n}}{y^n}$
We have to expand ${(c - d)^7}$
From binomial theorem we have
${(x + y)^7} = \sum\limits_{k = 0}^n {^n{C_k}} {x^{n - k}}{y^k} = {x^n}{ + ^n}{C_1}{x^{n - 1}}y{ + ^n}{C_2}{x^{n - 2}}{y^2} + \ldots { + ^n}{C_n}{x^{n - n}}{y^n}$
Putting $x = c,\,\,y = - d$ and apply a binomial theorem to get the expansion of ${(c - d)^7}$. We get,
$ \Rightarrow {(c + ( - d))^7} = \sum\limits_{k = 0}^7 {^7{C_k}} {(c)^{7 - k}}{( - d)^k}$
We can write the above equation as
$ \Rightarrow {(c + ( - d))^7} = {c^7}{ + ^7}{C_1}{(c)^{7 - 1}}( - d){ + ^7}{C_2}{(c)^{7 - 2}}{( - d)^2}{ + ^7}{C_3}{(c)^{7 - 3}}{( - d)^3}{ + ^7}{C_4}{(c)^{7 - 4}}{( - d)^4}{ + ^7}{C_5}{(c)^{7 - 5}}{( - d)^5}$ ${ + ^7}{C_6}{(c)^{7 - 6}}{( - d)^6}{ + ^7}{C_7}{(c)^{7 - 7}}{( - d)^7}$
Simplifying the power of the expression. We get,
$ \Rightarrow {(c + ( - d))^7} = {c^7}{ + ^7}{C_1}{(c)^6}( - d){ + ^7}{C_2}{(c)^5}{( - d)^2}{ + ^7}{C_3}{(c)^4}{( - d)^3}{ + ^7}{C_4}{(c)^3}{( - d)^4}{ + ^7}{C_5}{(c)^2}{( - d)^5}$${ + ^7}{C_6}{(c)^1}{( - d)^6}{ + ^7}{C_7}{( - d)^7}$
Now first we will find the value of terms $^7{C_1},\,{\,^7}{C_2},\,{\,^7}{C_3},\,{\,^7}{C_4},\,{\,^7}{C_5},\,{\,^7}{C_6},\,{\,^7}{C_7}\,\,$ with the help of the formula $^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
${ \Rightarrow ^7}{C_1} = \dfrac{{7!}}{{1!(7 - 1)!}} = \dfrac{{7!}}{{1!6!}}$
Expanding $7!$ and cancelling out common terms from both numerator and denominator. We get,
$ \Rightarrow \dfrac{{7 \times 6!}}{{1 \times 6!}} = 7$
Now, calculate the value for $^7{C_2}$
${ \Rightarrow ^7}{C_2} = \dfrac{{7!}}{{2!(7 - 2)!}} = \dfrac{{7!}}{{2!5!}}$
Expanding $7!$ and $2!$ and cancelling out common terms from both numerator and denominator.
We get,
$ \Rightarrow \dfrac{{7 \times 6 \times 5!}}{{2 \times 1 \times 5!}} = 21$
Now, calculate the value for $^7{C_3}$
${ \Rightarrow ^7}{C_3} = \dfrac{{7!}}{{3!(7 - 3)!}} = \dfrac{{7!}}{{3!4!}}$
Expanding $7!$ and $3!$ and cancelling out common terms from both numerator and denominator. We get,
$ \Rightarrow \dfrac{{7 \times 6 \times 5 \times 4!}}{{3 \times 2 \times 1 \times 4!}} = 35$
Now, calculate the value for \[^7{C_4}\]
${ \Rightarrow ^7}{C_4} = \dfrac{{7!}}{{4!(7 - 4)!}} = \dfrac{{7!}}{{4!3!}}$
Expanding $7!$ and $3!$ and cancelling out common terms from both numerator and denominator. We get,
$ \Rightarrow \dfrac{{7 \times 6 \times 5 \times 4!}}{{4!\, \times 3 \times 2 \times 1}} = 35$
Now, calculate the value for \[^7{C_5}\]
${ \Rightarrow ^7}{C_5} = \dfrac{{7!}}{{5!(7 - 5)!}} = \dfrac{{7!}}{{5!2!}}$
Expanding $7!$ and $2!$ and cancelling out common terms from both numerator and denominator.
We get,
$ \Rightarrow \dfrac{{7 \times 6 \times 5!}}{{5!\,\, \times 2 \times 1}} = 21$
Now, calculate the value for $^7{C_6}$
${ \Rightarrow ^7}{C_6} = \dfrac{{7!}}{{6!(7 - 6)!}} = \dfrac{{7!}}{{6!1!}}$
Expanding $7!$ and cancelling out common terms from both numerator and denominator.We get,
$ \Rightarrow \dfrac{{7 \times 6!}}{{6!\,\, \times 1}} = 7$
Now, calculate the value for $^7{C_7}$
${ \Rightarrow ^7}{C_7} = \dfrac{{7!}}{{7!}} = 1$
Putting these values in the expression. We get,
$ \Rightarrow {(c + ( - d))^7} = {c^7} + 7{(c)^6}( - d) + 21{(c)^5}{( - d)^2} + 35{(c)^4}{( - d)^3} + 35{(c)^3}{( - d)^4} + 21{(c)^2}{( - d)^5}$ $ + 7{(c)^1}{( - d)^6} + 1{( - d)^7}$
Simplifying the above equation. We get,
$ \therefore {(c - d)^7} = {c^7} - 7{c^6}d + 21{c^5}{d^2} - 35{c^4}{d^3} + 35{c^3}{d^4} - 21{c^2}{d^5} + 7c{d^6} - {d^7}$
Hence, the expansion of ${(c - d)^7} = {c^7} - 7{c^6}d + 21{c^5}{d^2} - 35{c^4}{d^3} + 35{c^3}{d^4} - 21{c^2}{d^5} + 7c{d^6} - {d^7}$.
Note: Some points that should be remember while solving the binomial expansion are that the total number of terms in the expansion ${(x + y)^n}$ is $(n + 1)$ and the sum of exponents is always equal to $n$. $^n{C_1},\,{\,^n}{C_2},\,{\,^n}{C_3},\,{\,^n}{C_4},\, \ldots {,^n}{C_n}\,\,$ are called binomial coefficients and we can also find them with the help of Pascal’s Triangle. The triangle is formed with the help of a simple rule of adding the two numbers above to get the numbers below it.
Complete step by step answer:
Here we have to expand the expression which is in the power of $7$. As the power of expression is $7$ the expansion of terms becomes very lengthy and tedious to calculate. It can be easily calculated with the help of the Binomial theorem. Binomial theorem is the process of expanding an expression that has been raised to finite power.
Binomial theorem states that we can expand the power ${(x + y)^n}$ into a sum involving terms in the form of $a{x^b}{y^c}$, where exponents $b$ and $c$ are non-negative integers with $b + c = n$ and $a$ is a coefficient of each term which is a specific positive integer depending on $n$ and $b$.
The theorem is given by the formula ${(x + y)^7} = \sum\limits_{k = 0}^n {^n{C_k}} {x^{n - k}}{y^k} = {x^n}{ + ^n}{C_1}{x^{n - 1}}y{ + ^n}{C_2}{x^{n - 2}}{y^2} + \ldots { + ^n}{C_n}{x^{n - n}}{y^n}$
We have to expand ${(c - d)^7}$
From binomial theorem we have
${(x + y)^7} = \sum\limits_{k = 0}^n {^n{C_k}} {x^{n - k}}{y^k} = {x^n}{ + ^n}{C_1}{x^{n - 1}}y{ + ^n}{C_2}{x^{n - 2}}{y^2} + \ldots { + ^n}{C_n}{x^{n - n}}{y^n}$
Putting $x = c,\,\,y = - d$ and apply a binomial theorem to get the expansion of ${(c - d)^7}$. We get,
$ \Rightarrow {(c + ( - d))^7} = \sum\limits_{k = 0}^7 {^7{C_k}} {(c)^{7 - k}}{( - d)^k}$
We can write the above equation as
$ \Rightarrow {(c + ( - d))^7} = {c^7}{ + ^7}{C_1}{(c)^{7 - 1}}( - d){ + ^7}{C_2}{(c)^{7 - 2}}{( - d)^2}{ + ^7}{C_3}{(c)^{7 - 3}}{( - d)^3}{ + ^7}{C_4}{(c)^{7 - 4}}{( - d)^4}{ + ^7}{C_5}{(c)^{7 - 5}}{( - d)^5}$ ${ + ^7}{C_6}{(c)^{7 - 6}}{( - d)^6}{ + ^7}{C_7}{(c)^{7 - 7}}{( - d)^7}$
Simplifying the power of the expression. We get,
$ \Rightarrow {(c + ( - d))^7} = {c^7}{ + ^7}{C_1}{(c)^6}( - d){ + ^7}{C_2}{(c)^5}{( - d)^2}{ + ^7}{C_3}{(c)^4}{( - d)^3}{ + ^7}{C_4}{(c)^3}{( - d)^4}{ + ^7}{C_5}{(c)^2}{( - d)^5}$${ + ^7}{C_6}{(c)^1}{( - d)^6}{ + ^7}{C_7}{( - d)^7}$
Now first we will find the value of terms $^7{C_1},\,{\,^7}{C_2},\,{\,^7}{C_3},\,{\,^7}{C_4},\,{\,^7}{C_5},\,{\,^7}{C_6},\,{\,^7}{C_7}\,\,$ with the help of the formula $^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
${ \Rightarrow ^7}{C_1} = \dfrac{{7!}}{{1!(7 - 1)!}} = \dfrac{{7!}}{{1!6!}}$
Expanding $7!$ and cancelling out common terms from both numerator and denominator. We get,
$ \Rightarrow \dfrac{{7 \times 6!}}{{1 \times 6!}} = 7$
Now, calculate the value for $^7{C_2}$
${ \Rightarrow ^7}{C_2} = \dfrac{{7!}}{{2!(7 - 2)!}} = \dfrac{{7!}}{{2!5!}}$
Expanding $7!$ and $2!$ and cancelling out common terms from both numerator and denominator.
We get,
$ \Rightarrow \dfrac{{7 \times 6 \times 5!}}{{2 \times 1 \times 5!}} = 21$
Now, calculate the value for $^7{C_3}$
${ \Rightarrow ^7}{C_3} = \dfrac{{7!}}{{3!(7 - 3)!}} = \dfrac{{7!}}{{3!4!}}$
Expanding $7!$ and $3!$ and cancelling out common terms from both numerator and denominator. We get,
$ \Rightarrow \dfrac{{7 \times 6 \times 5 \times 4!}}{{3 \times 2 \times 1 \times 4!}} = 35$
Now, calculate the value for \[^7{C_4}\]
${ \Rightarrow ^7}{C_4} = \dfrac{{7!}}{{4!(7 - 4)!}} = \dfrac{{7!}}{{4!3!}}$
Expanding $7!$ and $3!$ and cancelling out common terms from both numerator and denominator. We get,
$ \Rightarrow \dfrac{{7 \times 6 \times 5 \times 4!}}{{4!\, \times 3 \times 2 \times 1}} = 35$
Now, calculate the value for \[^7{C_5}\]
${ \Rightarrow ^7}{C_5} = \dfrac{{7!}}{{5!(7 - 5)!}} = \dfrac{{7!}}{{5!2!}}$
Expanding $7!$ and $2!$ and cancelling out common terms from both numerator and denominator.
We get,
$ \Rightarrow \dfrac{{7 \times 6 \times 5!}}{{5!\,\, \times 2 \times 1}} = 21$
Now, calculate the value for $^7{C_6}$
${ \Rightarrow ^7}{C_6} = \dfrac{{7!}}{{6!(7 - 6)!}} = \dfrac{{7!}}{{6!1!}}$
Expanding $7!$ and cancelling out common terms from both numerator and denominator.We get,
$ \Rightarrow \dfrac{{7 \times 6!}}{{6!\,\, \times 1}} = 7$
Now, calculate the value for $^7{C_7}$
${ \Rightarrow ^7}{C_7} = \dfrac{{7!}}{{7!}} = 1$
Putting these values in the expression. We get,
$ \Rightarrow {(c + ( - d))^7} = {c^7} + 7{(c)^6}( - d) + 21{(c)^5}{( - d)^2} + 35{(c)^4}{( - d)^3} + 35{(c)^3}{( - d)^4} + 21{(c)^2}{( - d)^5}$ $ + 7{(c)^1}{( - d)^6} + 1{( - d)^7}$
Simplifying the above equation. We get,
$ \therefore {(c - d)^7} = {c^7} - 7{c^6}d + 21{c^5}{d^2} - 35{c^4}{d^3} + 35{c^3}{d^4} - 21{c^2}{d^5} + 7c{d^6} - {d^7}$
Hence, the expansion of ${(c - d)^7} = {c^7} - 7{c^6}d + 21{c^5}{d^2} - 35{c^4}{d^3} + 35{c^3}{d^4} - 21{c^2}{d^5} + 7c{d^6} - {d^7}$.
Note: Some points that should be remember while solving the binomial expansion are that the total number of terms in the expansion ${(x + y)^n}$ is $(n + 1)$ and the sum of exponents is always equal to $n$. $^n{C_1},\,{\,^n}{C_2},\,{\,^n}{C_3},\,{\,^n}{C_4},\, \ldots {,^n}{C_n}\,\,$ are called binomial coefficients and we can also find them with the help of Pascal’s Triangle. The triangle is formed with the help of a simple rule of adding the two numbers above to get the numbers below it.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

