
How do you evaluate $ \tan 27{}^\circ $ ?
Answer
548.7k+ views
Hint: To find the value of $ \tan 27{}^\circ $ , we will use the fundamental trigonometric formulas such as $ \tan x=\dfrac{\sin x}{\cos x} $ , and we will also use the identity such as $ \sin \left( A-B \right)=\sin A\cos B-\sin B\cos A $ , $ \cos \left( A-B \right)=\cos A\cos B+\sin A\cos B $ . Also, we will use the value of $ \cos 18{}^\circ =\sin 72{}^\circ =\dfrac{1}{4}\left( \sqrt{5}-1 \right) $ and $ \cos 72{}^\circ =\sin 18{}^\circ =\dfrac{1}{4}\left( \sqrt{10+2\sqrt{5}} \right) $ .
Complete step by step answer:
We can see that the above-given question is of trigonometry, so we will use trigonometric identity to solve the above question.
Since we have to find the value of $ \tan 27{}^\circ $.
We can write $ \tan 27{}^\circ $ as $ \tan \left( 45{}^\circ -18{}^\circ \right) $ .
And, we know that $ \tan x=\dfrac{\sin x}{\cos x} $ , so we can write:
$ \Rightarrow \tan 27{}^\circ $ = $ \tan \left( 45{}^\circ -18{}^\circ \right) $ = $ \dfrac{\sin \left( 45{}^\circ -18{}^\circ \right)}{\cos \left( 45{}^\circ -18{}^\circ \right)} $ .
Now, we also know that $ \sin \left( A-B \right)=\sin A\cos B-\sin B\cos A $ and $ \cos \left( A-B \right)=\cos A\cos B+\sin A\cos B $ .
$ =\dfrac{\sin 45{}^\circ \cos 18{}^\circ -\sin 18{}^\circ \cos 45{}^\circ }{\cos 45{}^\circ \cos 18{}^\circ +\sin 45{}^\circ \sin 18{}^\circ } $
Now, we will put the value of $ \sin 45{}^\circ =\cos 45{}^\circ =\dfrac{1}{\sqrt{2}} $ , and $ \cos 18{}^\circ =\dfrac{1}{4}\left( \sqrt{5}-1 \right) $ , $ \sin 18{}^\circ =\dfrac{1}{4}\left( \sqrt{10+2\sqrt{5}} \right) $ in the above expression.
$ \Rightarrow \dfrac{\dfrac{1}{\sqrt{2}}\times \dfrac{1}{4}\left( \sqrt{10+2\sqrt{5}} \right)-\dfrac{1}{4}\left( \sqrt{5}-1 \right)\times \dfrac{1}{\sqrt{2}}}{\dfrac{1}{\sqrt{2}}\times \dfrac{1}{4}\left( \sqrt{10+2\sqrt{5}} \right)+\dfrac{1}{\sqrt{2}}\times \dfrac{1}{4}\left( \sqrt{5}-1 \right)} $
$ \Rightarrow \dfrac{\dfrac{1}{4\sqrt{2}}\left( \sqrt{10+2\sqrt{5}}-\sqrt{5}+1 \right)}{\dfrac{1}{4\sqrt{2}}\left( \sqrt{10+2\sqrt{5}}+\sqrt{5}-1 \right)} $
$ \Rightarrow \dfrac{\left( \sqrt{10+2\sqrt{5}}-\sqrt{5}+1 \right)}{\left( \sqrt{10+2\sqrt{5}}+\sqrt{5}-1 \right)} $
Now, we will rationalize it above term to simplify it.
$ \Rightarrow \dfrac{\left( \sqrt{10+2\sqrt{5}}-\sqrt{5}+1 \right)\left( \left( \sqrt{10+2\sqrt{5}}-\sqrt{5}+1 \right) \right)}{\left( \sqrt{10+2\sqrt{5}}+\sqrt{5}-1 \right)\left( \sqrt{10+2\sqrt{5}}-\sqrt{5}+1 \right)} $
$ \Rightarrow \dfrac{{{\left( \sqrt{10+2\sqrt{5}}-\sqrt{5}+1 \right)}^{2}}}{{{\left( \sqrt{10+2\sqrt{5}} \right)}^{2}}-{{\left( \sqrt{5}-1 \right)}^{2}}} $
$ \Rightarrow \dfrac{10+2\sqrt{5}+{{\left( \sqrt{5}-1 \right)}^{2}}-2\left( \sqrt{10+2\sqrt{5}} \right)\left( \sqrt{5}-1 \right)}{{{\left( \sqrt{10+2\sqrt{5}} \right)}^{2}}-{{\left( \sqrt{5}-1 \right)}^{2}}} $
$ \Rightarrow \dfrac{10+2\sqrt{5}+\left( 6-2\sqrt{5} \right)-2\left( \sqrt{10+2\sqrt{5}} \right)\left( \sqrt{5}-1 \right)}{10+2\sqrt{5}-\left( 6-2\sqrt{5} \right)} $
$ \Rightarrow \dfrac{16-2\left( \sqrt{10+2\sqrt{5}} \right)\left( \sqrt{5}-1 \right)}{4+4\sqrt{5}} $
$ \Rightarrow \dfrac{16-2\left( \sqrt{10+2\sqrt{5}} \right)\left( \sqrt{5}-1 \right)}{4\left( 1+\sqrt{5} \right)} $
Now, we will again rationalize the above term with respect to $ \left( \sqrt{5}+1 \right) $ .
$ \Rightarrow =\dfrac{\left( 16-2\left( \sqrt{10+2\sqrt{5}} \right)\left( \sqrt{5}-1 \right) \right)\left( \sqrt{5}-1 \right)}{4\left( \sqrt{5}+1 \right)\times \left( \sqrt{5}-1 \right)} $
$ \Rightarrow \dfrac{\left( 16-2\left( \sqrt{10+2\sqrt{5}} \right)\left( \sqrt{5}-1 \right) \right)\left( \sqrt{5}-1 \right)}{4\times 4} $
$ \Rightarrow \dfrac{\left( 16\left( \sqrt{5}-1 \right)-2\left( \sqrt{10+2\sqrt{5}} \right){{\left( \sqrt{5}-1 \right)}^{2}} \right)}{16} $
$ \Rightarrow \dfrac{\left( 16\left( \sqrt{5}-1 \right)-2\left( \sqrt{10+2\sqrt{5}} \right)\left( 6-2\sqrt{5} \right) \right)}{16} $
$ \Rightarrow \left( \sqrt{5}-1 \right)-\dfrac{\left( \left( \sqrt{10+2\sqrt{5}} \right)\left( 4-2\sqrt{5} \right) \right)}{8} $
Now, we will take 2 common from $ \left( 4-2\sqrt{5} \right) $ :
$ \Rightarrow \left( \sqrt{5}-1 \right)-\dfrac{2\left( \left( \sqrt{10+2\sqrt{5}} \right)\left( 3-\sqrt{5} \right) \right)}{8} $
Now, we will take $ \left( 3-\sqrt{5} \right) $ in the square root to simplify it more:
$ \Rightarrow \left( \sqrt{5}-1 \right)-\dfrac{\sqrt{\left( 10+2\sqrt{5} \right){{\left( 3-\sqrt{5} \right)}^{2}}}}{4} $
$ \Rightarrow \left( \sqrt{5}-1 \right)-\dfrac{\sqrt{\left( 10+2\sqrt{5} \right)\left( 14-6\sqrt{5} \right)}}{4} $
$ \Rightarrow \left( \sqrt{5}-1 \right)-\dfrac{\sqrt{\left( 140+28\sqrt{5}-60\sqrt{5}-60 \right)}}{4} $
$ \Rightarrow \left( \sqrt{5}-1 \right)-\dfrac{\sqrt{\left( 80-32\sqrt{5} \right)}}{4} $
$ \Rightarrow \left( \sqrt{5}-1 \right)-\dfrac{\sqrt{16\left( 5-2\sqrt{5} \right)}}{4} $
$ \Rightarrow \left( \sqrt{5}-1 \right)-\dfrac{4\sqrt{\left( 5-2\sqrt{5} \right)}}{4} $
$ \Rightarrow \left( \sqrt{5}-1 \right)-\sqrt{5-2\sqrt{5}} $
This is our required solution.
Note:
Students are required to note that when we are given $ \sec \theta $ , $ \operatorname{cosec}\theta $ , $ \tan \theta $ , and $ \cot \theta $ in the trigonometric expression then we always change them into $ \sin \theta $ and $ \cos \theta $ because we can easily simplify them. Students are also required to memorize the trigonometric formulas and values of special trigonometric values such as $ 15{}^\circ,18{}^\circ $, etc very well otherwise they will face problem while this try of question. Students are also requested to do calculations very carefully otherwise as we can see it is very lengthy and there are complicated terms.
Complete step by step answer:
We can see that the above-given question is of trigonometry, so we will use trigonometric identity to solve the above question.
Since we have to find the value of $ \tan 27{}^\circ $.
We can write $ \tan 27{}^\circ $ as $ \tan \left( 45{}^\circ -18{}^\circ \right) $ .
And, we know that $ \tan x=\dfrac{\sin x}{\cos x} $ , so we can write:
$ \Rightarrow \tan 27{}^\circ $ = $ \tan \left( 45{}^\circ -18{}^\circ \right) $ = $ \dfrac{\sin \left( 45{}^\circ -18{}^\circ \right)}{\cos \left( 45{}^\circ -18{}^\circ \right)} $ .
Now, we also know that $ \sin \left( A-B \right)=\sin A\cos B-\sin B\cos A $ and $ \cos \left( A-B \right)=\cos A\cos B+\sin A\cos B $ .
$ =\dfrac{\sin 45{}^\circ \cos 18{}^\circ -\sin 18{}^\circ \cos 45{}^\circ }{\cos 45{}^\circ \cos 18{}^\circ +\sin 45{}^\circ \sin 18{}^\circ } $
Now, we will put the value of $ \sin 45{}^\circ =\cos 45{}^\circ =\dfrac{1}{\sqrt{2}} $ , and $ \cos 18{}^\circ =\dfrac{1}{4}\left( \sqrt{5}-1 \right) $ , $ \sin 18{}^\circ =\dfrac{1}{4}\left( \sqrt{10+2\sqrt{5}} \right) $ in the above expression.
$ \Rightarrow \dfrac{\dfrac{1}{\sqrt{2}}\times \dfrac{1}{4}\left( \sqrt{10+2\sqrt{5}} \right)-\dfrac{1}{4}\left( \sqrt{5}-1 \right)\times \dfrac{1}{\sqrt{2}}}{\dfrac{1}{\sqrt{2}}\times \dfrac{1}{4}\left( \sqrt{10+2\sqrt{5}} \right)+\dfrac{1}{\sqrt{2}}\times \dfrac{1}{4}\left( \sqrt{5}-1 \right)} $
$ \Rightarrow \dfrac{\dfrac{1}{4\sqrt{2}}\left( \sqrt{10+2\sqrt{5}}-\sqrt{5}+1 \right)}{\dfrac{1}{4\sqrt{2}}\left( \sqrt{10+2\sqrt{5}}+\sqrt{5}-1 \right)} $
$ \Rightarrow \dfrac{\left( \sqrt{10+2\sqrt{5}}-\sqrt{5}+1 \right)}{\left( \sqrt{10+2\sqrt{5}}+\sqrt{5}-1 \right)} $
Now, we will rationalize it above term to simplify it.
$ \Rightarrow \dfrac{\left( \sqrt{10+2\sqrt{5}}-\sqrt{5}+1 \right)\left( \left( \sqrt{10+2\sqrt{5}}-\sqrt{5}+1 \right) \right)}{\left( \sqrt{10+2\sqrt{5}}+\sqrt{5}-1 \right)\left( \sqrt{10+2\sqrt{5}}-\sqrt{5}+1 \right)} $
$ \Rightarrow \dfrac{{{\left( \sqrt{10+2\sqrt{5}}-\sqrt{5}+1 \right)}^{2}}}{{{\left( \sqrt{10+2\sqrt{5}} \right)}^{2}}-{{\left( \sqrt{5}-1 \right)}^{2}}} $
$ \Rightarrow \dfrac{10+2\sqrt{5}+{{\left( \sqrt{5}-1 \right)}^{2}}-2\left( \sqrt{10+2\sqrt{5}} \right)\left( \sqrt{5}-1 \right)}{{{\left( \sqrt{10+2\sqrt{5}} \right)}^{2}}-{{\left( \sqrt{5}-1 \right)}^{2}}} $
$ \Rightarrow \dfrac{10+2\sqrt{5}+\left( 6-2\sqrt{5} \right)-2\left( \sqrt{10+2\sqrt{5}} \right)\left( \sqrt{5}-1 \right)}{10+2\sqrt{5}-\left( 6-2\sqrt{5} \right)} $
$ \Rightarrow \dfrac{16-2\left( \sqrt{10+2\sqrt{5}} \right)\left( \sqrt{5}-1 \right)}{4+4\sqrt{5}} $
$ \Rightarrow \dfrac{16-2\left( \sqrt{10+2\sqrt{5}} \right)\left( \sqrt{5}-1 \right)}{4\left( 1+\sqrt{5} \right)} $
Now, we will again rationalize the above term with respect to $ \left( \sqrt{5}+1 \right) $ .
$ \Rightarrow =\dfrac{\left( 16-2\left( \sqrt{10+2\sqrt{5}} \right)\left( \sqrt{5}-1 \right) \right)\left( \sqrt{5}-1 \right)}{4\left( \sqrt{5}+1 \right)\times \left( \sqrt{5}-1 \right)} $
$ \Rightarrow \dfrac{\left( 16-2\left( \sqrt{10+2\sqrt{5}} \right)\left( \sqrt{5}-1 \right) \right)\left( \sqrt{5}-1 \right)}{4\times 4} $
$ \Rightarrow \dfrac{\left( 16\left( \sqrt{5}-1 \right)-2\left( \sqrt{10+2\sqrt{5}} \right){{\left( \sqrt{5}-1 \right)}^{2}} \right)}{16} $
$ \Rightarrow \dfrac{\left( 16\left( \sqrt{5}-1 \right)-2\left( \sqrt{10+2\sqrt{5}} \right)\left( 6-2\sqrt{5} \right) \right)}{16} $
$ \Rightarrow \left( \sqrt{5}-1 \right)-\dfrac{\left( \left( \sqrt{10+2\sqrt{5}} \right)\left( 4-2\sqrt{5} \right) \right)}{8} $
Now, we will take 2 common from $ \left( 4-2\sqrt{5} \right) $ :
$ \Rightarrow \left( \sqrt{5}-1 \right)-\dfrac{2\left( \left( \sqrt{10+2\sqrt{5}} \right)\left( 3-\sqrt{5} \right) \right)}{8} $
Now, we will take $ \left( 3-\sqrt{5} \right) $ in the square root to simplify it more:
$ \Rightarrow \left( \sqrt{5}-1 \right)-\dfrac{\sqrt{\left( 10+2\sqrt{5} \right){{\left( 3-\sqrt{5} \right)}^{2}}}}{4} $
$ \Rightarrow \left( \sqrt{5}-1 \right)-\dfrac{\sqrt{\left( 10+2\sqrt{5} \right)\left( 14-6\sqrt{5} \right)}}{4} $
$ \Rightarrow \left( \sqrt{5}-1 \right)-\dfrac{\sqrt{\left( 140+28\sqrt{5}-60\sqrt{5}-60 \right)}}{4} $
$ \Rightarrow \left( \sqrt{5}-1 \right)-\dfrac{\sqrt{\left( 80-32\sqrt{5} \right)}}{4} $
$ \Rightarrow \left( \sqrt{5}-1 \right)-\dfrac{\sqrt{16\left( 5-2\sqrt{5} \right)}}{4} $
$ \Rightarrow \left( \sqrt{5}-1 \right)-\dfrac{4\sqrt{\left( 5-2\sqrt{5} \right)}}{4} $
$ \Rightarrow \left( \sqrt{5}-1 \right)-\sqrt{5-2\sqrt{5}} $
This is our required solution.
Note:
Students are required to note that when we are given $ \sec \theta $ , $ \operatorname{cosec}\theta $ , $ \tan \theta $ , and $ \cot \theta $ in the trigonometric expression then we always change them into $ \sin \theta $ and $ \cos \theta $ because we can easily simplify them. Students are also required to memorize the trigonometric formulas and values of special trigonometric values such as $ 15{}^\circ,18{}^\circ $, etc very well otherwise they will face problem while this try of question. Students are also requested to do calculations very carefully otherwise as we can see it is very lengthy and there are complicated terms.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

What is the full form of POSCO class 10 social science CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Write the difference between soap and detergent class 10 chemistry CBSE

A triangle ABC is drawn to circumscribe a circle of class 10 maths CBSE

