
How do you evaluate $\tan (210)?$
Answer
557.7k+ views
Hint:The trigonometric function $\tan \theta$ is defined for all real numbers $\theta $. We can write it in terms of $\sin \theta $ and $\cos \theta $ as $\dfrac{\sin \theta }{\cos \theta }$, where $\cos \theta \ne 0$.
The function $\tan \theta $ is undefined for $\theta =...,-\dfrac{5\pi }{2},-\dfrac{3\pi }{2},-\dfrac{\pi }{2},\dfrac{\pi }{2},\dfrac{3\pi }{2},\dfrac{5\pi }{2},...$
Some properties will help to evaluate $\tan (210)$
$\Rightarrow \pi $(in radian)$={{180}^{0}}$
$\Rightarrow \tan (\pi +\theta )=\tan \theta $.
$\Rightarrow \tan (-\theta )=-\tan \theta $.
$\Rightarrow $$\tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta $.
$\Rightarrow $$\tan \left( \dfrac{\pi }{2}+\theta \right)=\tan \theta $.
$\Rightarrow $$\tan (\theta +\varphi )=\dfrac{\tan \theta +\tan \varphi }{1-\tan \theta \times \tan \varphi }$.
Complete step by step solution:
To evaluate $\tan (210)$ we will do two factors $210$ in terms of $(\pi +\theta )$.
Therefore, $210$ can be written as in term of $(\pi +\theta )$is $(180+30)$
$\Rightarrow \tan (210)=\tan (\pi +30)$
$\Rightarrow \tan (\pi +30)=\tan (30)$
$\Rightarrow \tan (30)$
$\Rightarrow \dfrac{1}{\sqrt{3}}$
$\tan (210)=\dfrac{1}{\sqrt{3}}$.
We can rewrite this solution $\dfrac{\sqrt{3}}{3}$ by use of rationalization of the denominator as
$\Rightarrow \dfrac{1}{\sqrt{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}}$
$\Rightarrow \dfrac{\sqrt{3}}{3}$.
The value of $\tan (210)$both is equal
Hence the value $\tan (210)$ will be $\dfrac{1}{\sqrt{3}}$ or $\dfrac{\sqrt{3}}{3}$.
Note: The angle 210 will be in the third quadrant.
The tangent function is undefined when the function \[\cos ine\] will be zero.
The domain of the function $\tan \theta $ is real numbers.
And the range of the function is real numbers.
The function $\tan \theta $ is undefined for $\theta =...,-\dfrac{5\pi }{2},-\dfrac{3\pi }{2},-\dfrac{\pi }{2},\dfrac{\pi }{2},\dfrac{3\pi }{2},\dfrac{5\pi }{2},...$
Some properties will help to evaluate $\tan (210)$
$\Rightarrow \pi $(in radian)$={{180}^{0}}$
$\Rightarrow \tan (\pi +\theta )=\tan \theta $.
$\Rightarrow \tan (-\theta )=-\tan \theta $.
$\Rightarrow $$\tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta $.
$\Rightarrow $$\tan \left( \dfrac{\pi }{2}+\theta \right)=\tan \theta $.
$\Rightarrow $$\tan (\theta +\varphi )=\dfrac{\tan \theta +\tan \varphi }{1-\tan \theta \times \tan \varphi }$.
Complete step by step solution:
To evaluate $\tan (210)$ we will do two factors $210$ in terms of $(\pi +\theta )$.
Therefore, $210$ can be written as in term of $(\pi +\theta )$is $(180+30)$
$\Rightarrow \tan (210)=\tan (\pi +30)$
$\Rightarrow \tan (\pi +30)=\tan (30)$
$\Rightarrow \tan (30)$
$\Rightarrow \dfrac{1}{\sqrt{3}}$
$\tan (210)=\dfrac{1}{\sqrt{3}}$.
We can rewrite this solution $\dfrac{\sqrt{3}}{3}$ by use of rationalization of the denominator as
$\Rightarrow \dfrac{1}{\sqrt{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}}$
$\Rightarrow \dfrac{\sqrt{3}}{3}$.
The value of $\tan (210)$both is equal
Hence the value $\tan (210)$ will be $\dfrac{1}{\sqrt{3}}$ or $\dfrac{\sqrt{3}}{3}$.
Note: The angle 210 will be in the third quadrant.
The tangent function is undefined when the function \[\cos ine\] will be zero.
The domain of the function $\tan \theta $ is real numbers.
And the range of the function is real numbers.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

