
How do you evaluate $\sec {{110}^{\circ }}$?
Answer
548.1k+ views
Hint: The secant function is equal to the reciprocal of the cosine function. So we can write the given trigonometric expression as \[\dfrac{1}{\cos {{110}^{\circ }}}\]. Then, we have to use the trigonometric identity given by $\cos 3x=4{{\cos }^{3}}x-3\cos x$ and substitute $x={{110}^{\circ }}$ in the identity. On the LHS, we will get $\cos {{330}^{\circ }}$ which will be equal to $\dfrac{\sqrt{3}}{2}$ using the trigonometric identity $\cos \left( {{360}^{\circ }}-x \right)=\cos x$. On putting \[\cos {{110}^{\circ }}=x\], we will get a cubic equation in terms of \[x\] which can be solved using the graphing calculator to get the value of \[\cos {{110}^{\circ }}\]. Putting the value of \[\cos {{110}^{\circ }}\] in the expression \[\dfrac{1}{\cos {{110}^{\circ }}}\], we will get the final answer.
Complete step by step solution:
Let us consider the trigonometric expression given in the above question as
\[\Rightarrow E=\sec {{110}^{\circ }}\]
Now, we know that secant is the reciprocal of the cosine function, that is, \[\sec x=\dfrac{1}{\cos x}\]. Therefore, the above trigonometric expression can also be written as
\[\Rightarrow E=\dfrac{1}{\cos {{110}^{\circ }}}........\left( i \right)\]
So we have to evaluate the expression \[\cos {{110}^{\circ }}\]. For this we consider the trigonometric identity given by
$\Rightarrow \cos 3x=4{{\cos }^{3}}x-3\cos x$
Substituting $x={{110}^{\circ }}$ in the above identity, we get
\[\begin{align}
& \Rightarrow \cos 3\left( {{110}^{\circ }} \right)=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }} \\
& \Rightarrow \cos {{330}^{\circ }}=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }} \\
\end{align}\]
Writing \[{{330}^{\circ }}={{360}^{\circ }}-{{30}^{\circ }}\] in the LHS, we get
\[\Rightarrow \cos \left( {{360}^{\circ }}-{{30}^{\circ }} \right)=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }}\]
Now, we know that $\cos \left( {{360}^{\circ }}-x \right)=\cos x$. So the above expression becomes
\[\Rightarrow \cos {{30}^{\circ }}=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }}\]
We know that \[\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}\]. Putting this in the above equation, we get
\[\Rightarrow \dfrac{\sqrt{3}}{2}=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }}\]
Now let us substitute \[\cos {{110}^{\circ }}=x\] in the above equation to get
\[\Rightarrow \dfrac{\sqrt{3}}{2}=4{{x}^{3}}-3x\]
Subtracting \[\dfrac{\sqrt{3}}{2}\] from both the sides, we get
\[\begin{align}
& \Rightarrow \dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3}}{2}=4{{x}^{3}}-3x-\dfrac{\sqrt{3}}{2} \\
& \Rightarrow 0=4{{x}^{3}}-3x-\dfrac{\sqrt{3}}{2} \\
& \Rightarrow 4{{x}^{3}}-3x-\dfrac{\sqrt{3}}{2}=0 \\
\end{align}\]
Considering the graph of $y=4{{x}^{3}}-3x-\dfrac{\sqrt{3}}{2}$, we have
From the above graph, we get the roots as $x=-0.64,-0.34,0.98$. Since $x=\cos {{110}^{\circ }}$, the values $x=-0.34$ and $x=0.98$ are rejected. So we have
\[\begin{align}
& \Rightarrow x=-0.64 \\
& \Rightarrow \cos {{110}^{\circ }}=-0.64 \\
\end{align}\]
Putting this in (i) we get
$\begin{align}
& \Rightarrow E=\dfrac{1}{-0.34} \\
& \Rightarrow E=-2.94 \\
\end{align}$
Hence, the value of $\sec {{110}^{\circ }}$ is equal to $-2.94$.
Note: After solving the cubic equation obtained above, do not conclude it as your final answer. Since we had put \[\cos {{110}^{\circ }}=x\], the solution of the cubic equation will give the value of \[\cos {{110}^{\circ }}\]. But we have to find the value of \[\sec {{110}^{\circ }}\] which is equal to \[\dfrac{1}{\cos {{110}^{\circ }}}\].
Complete step by step solution:
Let us consider the trigonometric expression given in the above question as
\[\Rightarrow E=\sec {{110}^{\circ }}\]
Now, we know that secant is the reciprocal of the cosine function, that is, \[\sec x=\dfrac{1}{\cos x}\]. Therefore, the above trigonometric expression can also be written as
\[\Rightarrow E=\dfrac{1}{\cos {{110}^{\circ }}}........\left( i \right)\]
So we have to evaluate the expression \[\cos {{110}^{\circ }}\]. For this we consider the trigonometric identity given by
$\Rightarrow \cos 3x=4{{\cos }^{3}}x-3\cos x$
Substituting $x={{110}^{\circ }}$ in the above identity, we get
\[\begin{align}
& \Rightarrow \cos 3\left( {{110}^{\circ }} \right)=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }} \\
& \Rightarrow \cos {{330}^{\circ }}=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }} \\
\end{align}\]
Writing \[{{330}^{\circ }}={{360}^{\circ }}-{{30}^{\circ }}\] in the LHS, we get
\[\Rightarrow \cos \left( {{360}^{\circ }}-{{30}^{\circ }} \right)=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }}\]
Now, we know that $\cos \left( {{360}^{\circ }}-x \right)=\cos x$. So the above expression becomes
\[\Rightarrow \cos {{30}^{\circ }}=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }}\]
We know that \[\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}\]. Putting this in the above equation, we get
\[\Rightarrow \dfrac{\sqrt{3}}{2}=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }}\]
Now let us substitute \[\cos {{110}^{\circ }}=x\] in the above equation to get
\[\Rightarrow \dfrac{\sqrt{3}}{2}=4{{x}^{3}}-3x\]
Subtracting \[\dfrac{\sqrt{3}}{2}\] from both the sides, we get
\[\begin{align}
& \Rightarrow \dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3}}{2}=4{{x}^{3}}-3x-\dfrac{\sqrt{3}}{2} \\
& \Rightarrow 0=4{{x}^{3}}-3x-\dfrac{\sqrt{3}}{2} \\
& \Rightarrow 4{{x}^{3}}-3x-\dfrac{\sqrt{3}}{2}=0 \\
\end{align}\]
Considering the graph of $y=4{{x}^{3}}-3x-\dfrac{\sqrt{3}}{2}$, we have
From the above graph, we get the roots as $x=-0.64,-0.34,0.98$. Since $x=\cos {{110}^{\circ }}$, the values $x=-0.34$ and $x=0.98$ are rejected. So we have
\[\begin{align}
& \Rightarrow x=-0.64 \\
& \Rightarrow \cos {{110}^{\circ }}=-0.64 \\
\end{align}\]
Putting this in (i) we get
$\begin{align}
& \Rightarrow E=\dfrac{1}{-0.34} \\
& \Rightarrow E=-2.94 \\
\end{align}$
Hence, the value of $\sec {{110}^{\circ }}$ is equal to $-2.94$.
Note: After solving the cubic equation obtained above, do not conclude it as your final answer. Since we had put \[\cos {{110}^{\circ }}=x\], the solution of the cubic equation will give the value of \[\cos {{110}^{\circ }}\]. But we have to find the value of \[\sec {{110}^{\circ }}\] which is equal to \[\dfrac{1}{\cos {{110}^{\circ }}}\].
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

