
How do you evaluate $\sec {{110}^{\circ }}$?
Answer
533.4k+ views
Hint: The secant function is equal to the reciprocal of the cosine function. So we can write the given trigonometric expression as \[\dfrac{1}{\cos {{110}^{\circ }}}\]. Then, we have to use the trigonometric identity given by $\cos 3x=4{{\cos }^{3}}x-3\cos x$ and substitute $x={{110}^{\circ }}$ in the identity. On the LHS, we will get $\cos {{330}^{\circ }}$ which will be equal to $\dfrac{\sqrt{3}}{2}$ using the trigonometric identity $\cos \left( {{360}^{\circ }}-x \right)=\cos x$. On putting \[\cos {{110}^{\circ }}=x\], we will get a cubic equation in terms of \[x\] which can be solved using the graphing calculator to get the value of \[\cos {{110}^{\circ }}\]. Putting the value of \[\cos {{110}^{\circ }}\] in the expression \[\dfrac{1}{\cos {{110}^{\circ }}}\], we will get the final answer.
Complete step by step solution:
Let us consider the trigonometric expression given in the above question as
\[\Rightarrow E=\sec {{110}^{\circ }}\]
Now, we know that secant is the reciprocal of the cosine function, that is, \[\sec x=\dfrac{1}{\cos x}\]. Therefore, the above trigonometric expression can also be written as
\[\Rightarrow E=\dfrac{1}{\cos {{110}^{\circ }}}........\left( i \right)\]
So we have to evaluate the expression \[\cos {{110}^{\circ }}\]. For this we consider the trigonometric identity given by
$\Rightarrow \cos 3x=4{{\cos }^{3}}x-3\cos x$
Substituting $x={{110}^{\circ }}$ in the above identity, we get
\[\begin{align}
& \Rightarrow \cos 3\left( {{110}^{\circ }} \right)=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }} \\
& \Rightarrow \cos {{330}^{\circ }}=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }} \\
\end{align}\]
Writing \[{{330}^{\circ }}={{360}^{\circ }}-{{30}^{\circ }}\] in the LHS, we get
\[\Rightarrow \cos \left( {{360}^{\circ }}-{{30}^{\circ }} \right)=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }}\]
Now, we know that $\cos \left( {{360}^{\circ }}-x \right)=\cos x$. So the above expression becomes
\[\Rightarrow \cos {{30}^{\circ }}=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }}\]
We know that \[\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}\]. Putting this in the above equation, we get
\[\Rightarrow \dfrac{\sqrt{3}}{2}=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }}\]
Now let us substitute \[\cos {{110}^{\circ }}=x\] in the above equation to get
\[\Rightarrow \dfrac{\sqrt{3}}{2}=4{{x}^{3}}-3x\]
Subtracting \[\dfrac{\sqrt{3}}{2}\] from both the sides, we get
\[\begin{align}
& \Rightarrow \dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3}}{2}=4{{x}^{3}}-3x-\dfrac{\sqrt{3}}{2} \\
& \Rightarrow 0=4{{x}^{3}}-3x-\dfrac{\sqrt{3}}{2} \\
& \Rightarrow 4{{x}^{3}}-3x-\dfrac{\sqrt{3}}{2}=0 \\
\end{align}\]
Considering the graph of $y=4{{x}^{3}}-3x-\dfrac{\sqrt{3}}{2}$, we have
From the above graph, we get the roots as $x=-0.64,-0.34,0.98$. Since $x=\cos {{110}^{\circ }}$, the values $x=-0.34$ and $x=0.98$ are rejected. So we have
\[\begin{align}
& \Rightarrow x=-0.64 \\
& \Rightarrow \cos {{110}^{\circ }}=-0.64 \\
\end{align}\]
Putting this in (i) we get
$\begin{align}
& \Rightarrow E=\dfrac{1}{-0.34} \\
& \Rightarrow E=-2.94 \\
\end{align}$
Hence, the value of $\sec {{110}^{\circ }}$ is equal to $-2.94$.
Note: After solving the cubic equation obtained above, do not conclude it as your final answer. Since we had put \[\cos {{110}^{\circ }}=x\], the solution of the cubic equation will give the value of \[\cos {{110}^{\circ }}\]. But we have to find the value of \[\sec {{110}^{\circ }}\] which is equal to \[\dfrac{1}{\cos {{110}^{\circ }}}\].
Complete step by step solution:
Let us consider the trigonometric expression given in the above question as
\[\Rightarrow E=\sec {{110}^{\circ }}\]
Now, we know that secant is the reciprocal of the cosine function, that is, \[\sec x=\dfrac{1}{\cos x}\]. Therefore, the above trigonometric expression can also be written as
\[\Rightarrow E=\dfrac{1}{\cos {{110}^{\circ }}}........\left( i \right)\]
So we have to evaluate the expression \[\cos {{110}^{\circ }}\]. For this we consider the trigonometric identity given by
$\Rightarrow \cos 3x=4{{\cos }^{3}}x-3\cos x$
Substituting $x={{110}^{\circ }}$ in the above identity, we get
\[\begin{align}
& \Rightarrow \cos 3\left( {{110}^{\circ }} \right)=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }} \\
& \Rightarrow \cos {{330}^{\circ }}=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }} \\
\end{align}\]
Writing \[{{330}^{\circ }}={{360}^{\circ }}-{{30}^{\circ }}\] in the LHS, we get
\[\Rightarrow \cos \left( {{360}^{\circ }}-{{30}^{\circ }} \right)=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }}\]
Now, we know that $\cos \left( {{360}^{\circ }}-x \right)=\cos x$. So the above expression becomes
\[\Rightarrow \cos {{30}^{\circ }}=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }}\]
We know that \[\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}\]. Putting this in the above equation, we get
\[\Rightarrow \dfrac{\sqrt{3}}{2}=4{{\cos }^{3}}{{110}^{\circ }}-3\cos {{110}^{\circ }}\]
Now let us substitute \[\cos {{110}^{\circ }}=x\] in the above equation to get
\[\Rightarrow \dfrac{\sqrt{3}}{2}=4{{x}^{3}}-3x\]
Subtracting \[\dfrac{\sqrt{3}}{2}\] from both the sides, we get
\[\begin{align}
& \Rightarrow \dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3}}{2}=4{{x}^{3}}-3x-\dfrac{\sqrt{3}}{2} \\
& \Rightarrow 0=4{{x}^{3}}-3x-\dfrac{\sqrt{3}}{2} \\
& \Rightarrow 4{{x}^{3}}-3x-\dfrac{\sqrt{3}}{2}=0 \\
\end{align}\]
Considering the graph of $y=4{{x}^{3}}-3x-\dfrac{\sqrt{3}}{2}$, we have
From the above graph, we get the roots as $x=-0.64,-0.34,0.98$. Since $x=\cos {{110}^{\circ }}$, the values $x=-0.34$ and $x=0.98$ are rejected. So we have
\[\begin{align}
& \Rightarrow x=-0.64 \\
& \Rightarrow \cos {{110}^{\circ }}=-0.64 \\
\end{align}\]
Putting this in (i) we get
$\begin{align}
& \Rightarrow E=\dfrac{1}{-0.34} \\
& \Rightarrow E=-2.94 \\
\end{align}$
Hence, the value of $\sec {{110}^{\circ }}$ is equal to $-2.94$.
Note: After solving the cubic equation obtained above, do not conclude it as your final answer. Since we had put \[\cos {{110}^{\circ }}=x\], the solution of the cubic equation will give the value of \[\cos {{110}^{\circ }}\]. But we have to find the value of \[\sec {{110}^{\circ }}\] which is equal to \[\dfrac{1}{\cos {{110}^{\circ }}}\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

