
How do you evaluate $\cos {75^ \circ }$ ?
Answer
534k+ views
Hint: We will use the cosine sum and difference formula to find the exact functional value of $\cos {75^ \circ }$. So, here we will use $\cos \left( {A + B} \right)$ i.e., cosine sum identity or $\cos \left( {A - B} \right)$ i.e., cosine difference identity which are defined as \[\cos A\cos B - \sin A\sin B\] and $\cos A\cos B + \sin A\sin B$ using one of these we will get the required value.
Complete Step by Step Solution: -
We’ll solve this by using two methods one by using the cosine sum identity and another by using the cosine difference identity.
Method – 1: Using the cosine sum identity:
We have to find the value of $\cos {75^ \circ }$. So, we can also write $\cos {75^ \circ }$ as –
$\cos {75^ \circ } = \cos \left( {{{45}^ \circ } + {{30}^ \circ }} \right)$
We know that, cosine sum identity is –
$\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$
Using the above identity for $\cos \left( {{{45}^ \circ } + {{30}^ \circ }} \right)$ , we get –
Here, $A = {45^ \circ }$ and $B = {30^ \circ }$. Substituting these values in the identity, we get –
$ \Rightarrow \cos \left( {45 + 30} \right) = \cos 45\cos 30 - \sin 45\sin 30$
By using the specified cosine and cosine angle i.e., $\cos 45 = \dfrac{1}{{\sqrt 2 }},\cos 30 = \dfrac{{\sqrt 3 }}{2},\sin 45 = \dfrac{1}{{\sqrt 2 }}$ and $\sin 30 = \dfrac{1}{2}$ , we get –
$\therefore \cos \left( {75} \right) = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}$
On simplification, we get –
$ \Rightarrow \cos 75 = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} - \dfrac{1}{{2\sqrt 2 }}$
Taking $2\sqrt 2 $ common from the denominator, we get –
$ \Rightarrow \cos 75 = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Hence, the exact functional value of $\cos 75$ is $\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$.
Method – 2: Using the cosine difference identity:
We have to find the value of $\cos {75^ \circ }$. So, we can also write $\cos {75^ \circ }$ as –
$\cos {75^ \circ } = \cos \left( {{{135}^ \circ } - {{60}^ \circ }} \right)$
We know that, cosine sum identity is –
$\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$
Using the above identity for $\cos \left( {{{135}^ \circ } - {{60}^ \circ }} \right)$ , we get –
Here, $A = {135^ \circ }$ and $B = {60^ \circ }$. Substituting these values in the identity, we get –
\[ \Rightarrow \cos \left( {135 - 60} \right) = \cos 135\cos 60 - \sin 135\sin 60\]
By using the specified cosine and cosine angle i.e., $\cos 135 = - \dfrac{1}{{\sqrt 2 }},\cos 60 = \dfrac{1}{2},\sin 135 = \dfrac{1}{{\sqrt 2 }}$ and $\sin 60 = \dfrac{{\sqrt 3 }}{2}$ , we get –
$\therefore \cos \left( {75} \right) = \dfrac{{ - 1}}{{\sqrt 2 }}.\dfrac{1}{2} + \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2}$
On simplification, we get –
$ \Rightarrow \cos 75 = - \dfrac{1}{{2\sqrt 2 }} + \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$
Taking $2\sqrt 2 $ common from the denominator, we get –
$ \Rightarrow \cos 75 = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Hence, the exact functional value of $\sin 75$ is $\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$.
Note:
The values of cosine and sine can be determined by using the other methods such as double angle formula, half angle formula. In this question, we found the value of $\cos 75$ by using the cosine sum and difference formula. Here, we used the value of trigonometry ratios of standard angles. That’s why we can determine the solution for the question.
Complete Step by Step Solution: -
We’ll solve this by using two methods one by using the cosine sum identity and another by using the cosine difference identity.
Method – 1: Using the cosine sum identity:
We have to find the value of $\cos {75^ \circ }$. So, we can also write $\cos {75^ \circ }$ as –
$\cos {75^ \circ } = \cos \left( {{{45}^ \circ } + {{30}^ \circ }} \right)$
We know that, cosine sum identity is –
$\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$
Using the above identity for $\cos \left( {{{45}^ \circ } + {{30}^ \circ }} \right)$ , we get –
Here, $A = {45^ \circ }$ and $B = {30^ \circ }$. Substituting these values in the identity, we get –
$ \Rightarrow \cos \left( {45 + 30} \right) = \cos 45\cos 30 - \sin 45\sin 30$
By using the specified cosine and cosine angle i.e., $\cos 45 = \dfrac{1}{{\sqrt 2 }},\cos 30 = \dfrac{{\sqrt 3 }}{2},\sin 45 = \dfrac{1}{{\sqrt 2 }}$ and $\sin 30 = \dfrac{1}{2}$ , we get –
$\therefore \cos \left( {75} \right) = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}$
On simplification, we get –
$ \Rightarrow \cos 75 = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} - \dfrac{1}{{2\sqrt 2 }}$
Taking $2\sqrt 2 $ common from the denominator, we get –
$ \Rightarrow \cos 75 = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Hence, the exact functional value of $\cos 75$ is $\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$.
Method – 2: Using the cosine difference identity:
We have to find the value of $\cos {75^ \circ }$. So, we can also write $\cos {75^ \circ }$ as –
$\cos {75^ \circ } = \cos \left( {{{135}^ \circ } - {{60}^ \circ }} \right)$
We know that, cosine sum identity is –
$\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$
Using the above identity for $\cos \left( {{{135}^ \circ } - {{60}^ \circ }} \right)$ , we get –
Here, $A = {135^ \circ }$ and $B = {60^ \circ }$. Substituting these values in the identity, we get –
\[ \Rightarrow \cos \left( {135 - 60} \right) = \cos 135\cos 60 - \sin 135\sin 60\]
By using the specified cosine and cosine angle i.e., $\cos 135 = - \dfrac{1}{{\sqrt 2 }},\cos 60 = \dfrac{1}{2},\sin 135 = \dfrac{1}{{\sqrt 2 }}$ and $\sin 60 = \dfrac{{\sqrt 3 }}{2}$ , we get –
$\therefore \cos \left( {75} \right) = \dfrac{{ - 1}}{{\sqrt 2 }}.\dfrac{1}{2} + \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2}$
On simplification, we get –
$ \Rightarrow \cos 75 = - \dfrac{1}{{2\sqrt 2 }} + \dfrac{{\sqrt 3 }}{{2\sqrt 2 }}$
Taking $2\sqrt 2 $ common from the denominator, we get –
$ \Rightarrow \cos 75 = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Hence, the exact functional value of $\sin 75$ is $\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$.
Note:
The values of cosine and sine can be determined by using the other methods such as double angle formula, half angle formula. In this question, we found the value of $\cos 75$ by using the cosine sum and difference formula. Here, we used the value of trigonometry ratios of standard angles. That’s why we can determine the solution for the question.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE


