
How do you evaluate ${}^9{P_3}$?
Answer
539.7k+ views
Hint: use the formula for permutation and substitute the values of n and r in the formula. After substituting the required values solve the factorial to get the desired answer.
Complete step by step solution:
In the above question we are required to evaluate the value of $^9{P_3}$
We know that,
$^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
On comparing the given equation with the above formula we come to the conclusion that
$n = 9$ and
$r = 3$
Now substitute the values of n and r in the formula and we reach:
$^9{P_3} = \dfrac{{9!}}{{(9 - 3)!}}$
On simplifying we get
$^9{P_3} = \dfrac{{9!}}{{(6)!}}$
Which can also be written as
$^9{P_3} = \dfrac{{9 \times 8 \times 7 \times 6!}}{{(6)!}}$
On further simplifying we get
$^9{P_3} = 9 \times 8 \times 7$
$^9{P_3} = 504$
Note:
Factorial is defined as the product of all natural numbers less than or equal to a given number.
For the natural number ‘n’, it’s factorial is denoted as n!
And $n! = n(n - 1)(n - 2)(n - 3)(n - 4)....3 \times 2 \times 1$
Remember that:
$
0! = 1 \\
1! = 1 \\
$
And
The permutation is the arrangement of objects in a definite order.
The number of permutations of n different objects taken r at a time without replacement, where $0 < r \leqslant n$, is given by:
$^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
The selection of some or all objects from a given set of different objects where the order of selection is not considered is called Combination. Therefore, the number of combinations of n different objects taken r objects out of them without replacement, $0 < r \leqslant n$, is given by:
$^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}} = \dfrac{{^n{P_r}}}{{r!}}$
Remember:
If in a problem statement, you are asked for selection and their ordering, then you should use permutation.
In simple words, we can say that,
Permutation=Selecting + Ordering
If in any problem statement, you are asked only for selection then you should use a combination.
In simple words, we say that,
Combination= Selection.
Complete step by step solution:
In the above question we are required to evaluate the value of $^9{P_3}$
We know that,
$^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
On comparing the given equation with the above formula we come to the conclusion that
$n = 9$ and
$r = 3$
Now substitute the values of n and r in the formula and we reach:
$^9{P_3} = \dfrac{{9!}}{{(9 - 3)!}}$
On simplifying we get
$^9{P_3} = \dfrac{{9!}}{{(6)!}}$
Which can also be written as
$^9{P_3} = \dfrac{{9 \times 8 \times 7 \times 6!}}{{(6)!}}$
On further simplifying we get
$^9{P_3} = 9 \times 8 \times 7$
$^9{P_3} = 504$
Note:
Factorial is defined as the product of all natural numbers less than or equal to a given number.
For the natural number ‘n’, it’s factorial is denoted as n!
And $n! = n(n - 1)(n - 2)(n - 3)(n - 4)....3 \times 2 \times 1$
Remember that:
$
0! = 1 \\
1! = 1 \\
$
And
The permutation is the arrangement of objects in a definite order.
The number of permutations of n different objects taken r at a time without replacement, where $0 < r \leqslant n$, is given by:
$^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
The selection of some or all objects from a given set of different objects where the order of selection is not considered is called Combination. Therefore, the number of combinations of n different objects taken r objects out of them without replacement, $0 < r \leqslant n$, is given by:
$^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}} = \dfrac{{^n{P_r}}}{{r!}}$
Remember:
If in a problem statement, you are asked for selection and their ordering, then you should use permutation.
In simple words, we can say that,
Permutation=Selecting + Ordering
If in any problem statement, you are asked only for selection then you should use a combination.
In simple words, we say that,
Combination= Selection.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

