
How do you evaluate $^{10}{C_3} $
Answer
442.5k+ views
Hint: In order to evaluate the above ,consider $n = 10$ and $r = 3$ and use the formula of $C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$ to find the number of combinations.
Formula used:
$C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
$p(n,r)\, = {\,^n}{P_r} = \dfrac{{n!}}{{(n - r)!}}$
Complete step by step solution:
Given $^{10}{C_3}$ ,this is of the form ${\,^n}{C_r}$ where $n = 10$ and $r = 3$.
To evaluate this we will use formula of $C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
So, Putting the value of n and r in the above formula
$
C(n,r)\, = {\,^n}{C_r} = \dfrac{{10!}}{{3!(10 - 3)!}} \\
= \dfrac{{10!}}{{3!7!}} \\
$
$10!$ is equivalent to $10 \times 9 \times 8 \times 7!$
$
= \dfrac{{10 \times 9 \times 8 \times 7!}}{{3!7!}} \\
= \dfrac{{10 \times 9 \times 8 \times {7}!}}{{3!{7}!}} \\
= \dfrac{{10 \times 9 \times 8}}{{3 \times 2}} \\
= 10 \times 3 \times 4 \\
= 120 \\
$
Therefore, value of $^{10}{C_3}$ is equal to $120$
Additional Information:
1.Factorial: The continued product of first n natural numbers is called the “n factorial “ and denoted
by $n!$.
2.Permutation: Each of the arrangements which can be made by taking some or all of number of
things are called permutations. If n and r are positive integers such that $1 \leqslant r \leqslant n$, then the number of all permutations of n distinct or different things, taken r at one time is denoted by the symbol
$p(n,r)\,or{\,^n}{P_r}$.
$p(n,r)\, = {\,^n}{P_r} = \dfrac{{n!}}{{(n - r)!}}$
3.Combinations: Each of the different selections made by taking some or all of a number of objects
irrespective of their arrangement is called a combination. The combinations number of n objects, taken r at one time is generally denoted by
$C(n,r)\,or{\,^n}{C_r}$
Thus, $C(n,r)\,or{\,^n}{C_r}$= Number of ways of selecting r objects from n objects.
$C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
Note: 1. Factorials of proper fractions or negative integers are not defined. Factorial n defined only for whole numbers.
2.Meaning of Zero factorial is senseless to define it as the product of integers from 1 to zero. So, we
define it as $0! = 1$.
3.Don’t forget to cross-check your answer at least once as it may contain calculation errors.
Formula used:
$C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
$p(n,r)\, = {\,^n}{P_r} = \dfrac{{n!}}{{(n - r)!}}$
Complete step by step solution:
Given $^{10}{C_3}$ ,this is of the form ${\,^n}{C_r}$ where $n = 10$ and $r = 3$.
To evaluate this we will use formula of $C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
So, Putting the value of n and r in the above formula
$
C(n,r)\, = {\,^n}{C_r} = \dfrac{{10!}}{{3!(10 - 3)!}} \\
= \dfrac{{10!}}{{3!7!}} \\
$
$10!$ is equivalent to $10 \times 9 \times 8 \times 7!$
$
= \dfrac{{10 \times 9 \times 8 \times 7!}}{{3!7!}} \\
= \dfrac{{10 \times 9 \times 8 \times {7}!}}{{3!{7}!}} \\
= \dfrac{{10 \times 9 \times 8}}{{3 \times 2}} \\
= 10 \times 3 \times 4 \\
= 120 \\
$
Therefore, value of $^{10}{C_3}$ is equal to $120$
Additional Information:
1.Factorial: The continued product of first n natural numbers is called the “n factorial “ and denoted
by $n!$.
2.Permutation: Each of the arrangements which can be made by taking some or all of number of
things are called permutations. If n and r are positive integers such that $1 \leqslant r \leqslant n$, then the number of all permutations of n distinct or different things, taken r at one time is denoted by the symbol
$p(n,r)\,or{\,^n}{P_r}$.
$p(n,r)\, = {\,^n}{P_r} = \dfrac{{n!}}{{(n - r)!}}$
3.Combinations: Each of the different selections made by taking some or all of a number of objects
irrespective of their arrangement is called a combination. The combinations number of n objects, taken r at one time is generally denoted by
$C(n,r)\,or{\,^n}{C_r}$
Thus, $C(n,r)\,or{\,^n}{C_r}$= Number of ways of selecting r objects from n objects.
$C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
Note: 1. Factorials of proper fractions or negative integers are not defined. Factorial n defined only for whole numbers.
2.Meaning of Zero factorial is senseless to define it as the product of integers from 1 to zero. So, we
define it as $0! = 1$.
3.Don’t forget to cross-check your answer at least once as it may contain calculation errors.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE
