Answer
Verified
406.2k+ views
Hint: In order to evaluate the above ,consider $n = 10$ and $r = 3$ and use the formula of $C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$ to find the number of combinations.
Formula used:
$C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
$p(n,r)\, = {\,^n}{P_r} = \dfrac{{n!}}{{(n - r)!}}$
Complete step by step solution:
Given $^{10}{C_3}$ ,this is of the form ${\,^n}{C_r}$ where $n = 10$ and $r = 3$.
To evaluate this we will use formula of $C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
So, Putting the value of n and r in the above formula
$
C(n,r)\, = {\,^n}{C_r} = \dfrac{{10!}}{{3!(10 - 3)!}} \\
= \dfrac{{10!}}{{3!7!}} \\
$
$10!$ is equivalent to $10 \times 9 \times 8 \times 7!$
$
= \dfrac{{10 \times 9 \times 8 \times 7!}}{{3!7!}} \\
= \dfrac{{10 \times 9 \times 8 \times {7}!}}{{3!{7}!}} \\
= \dfrac{{10 \times 9 \times 8}}{{3 \times 2}} \\
= 10 \times 3 \times 4 \\
= 120 \\
$
Therefore, value of $^{10}{C_3}$ is equal to $120$
Additional Information:
1.Factorial: The continued product of first n natural numbers is called the “n factorial “ and denoted
by $n!$.
2.Permutation: Each of the arrangements which can be made by taking some or all of number of
things are called permutations. If n and r are positive integers such that $1 \leqslant r \leqslant n$, then the number of all permutations of n distinct or different things, taken r at one time is denoted by the symbol
$p(n,r)\,or{\,^n}{P_r}$.
$p(n,r)\, = {\,^n}{P_r} = \dfrac{{n!}}{{(n - r)!}}$
3.Combinations: Each of the different selections made by taking some or all of a number of objects
irrespective of their arrangement is called a combination. The combinations number of n objects, taken r at one time is generally denoted by
$C(n,r)\,or{\,^n}{C_r}$
Thus, $C(n,r)\,or{\,^n}{C_r}$= Number of ways of selecting r objects from n objects.
$C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
Note: 1. Factorials of proper fractions or negative integers are not defined. Factorial n defined only for whole numbers.
2.Meaning of Zero factorial is senseless to define it as the product of integers from 1 to zero. So, we
define it as $0! = 1$.
3.Don’t forget to cross-check your answer at least once as it may contain calculation errors.
Formula used:
$C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
$p(n,r)\, = {\,^n}{P_r} = \dfrac{{n!}}{{(n - r)!}}$
Complete step by step solution:
Given $^{10}{C_3}$ ,this is of the form ${\,^n}{C_r}$ where $n = 10$ and $r = 3$.
To evaluate this we will use formula of $C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
So, Putting the value of n and r in the above formula
$
C(n,r)\, = {\,^n}{C_r} = \dfrac{{10!}}{{3!(10 - 3)!}} \\
= \dfrac{{10!}}{{3!7!}} \\
$
$10!$ is equivalent to $10 \times 9 \times 8 \times 7!$
$
= \dfrac{{10 \times 9 \times 8 \times 7!}}{{3!7!}} \\
= \dfrac{{10 \times 9 \times 8 \times {7}!}}{{3!{7}!}} \\
= \dfrac{{10 \times 9 \times 8}}{{3 \times 2}} \\
= 10 \times 3 \times 4 \\
= 120 \\
$
Therefore, value of $^{10}{C_3}$ is equal to $120$
Additional Information:
1.Factorial: The continued product of first n natural numbers is called the “n factorial “ and denoted
by $n!$.
2.Permutation: Each of the arrangements which can be made by taking some or all of number of
things are called permutations. If n and r are positive integers such that $1 \leqslant r \leqslant n$, then the number of all permutations of n distinct or different things, taken r at one time is denoted by the symbol
$p(n,r)\,or{\,^n}{P_r}$.
$p(n,r)\, = {\,^n}{P_r} = \dfrac{{n!}}{{(n - r)!}}$
3.Combinations: Each of the different selections made by taking some or all of a number of objects
irrespective of their arrangement is called a combination. The combinations number of n objects, taken r at one time is generally denoted by
$C(n,r)\,or{\,^n}{C_r}$
Thus, $C(n,r)\,or{\,^n}{C_r}$= Number of ways of selecting r objects from n objects.
$C(n,r)\, = {\,^n}{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
Note: 1. Factorials of proper fractions or negative integers are not defined. Factorial n defined only for whole numbers.
2.Meaning of Zero factorial is senseless to define it as the product of integers from 1 to zero. So, we
define it as $0! = 1$.
3.Don’t forget to cross-check your answer at least once as it may contain calculation errors.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE