
How do you divide \[\dfrac{3{{x}^{3}}+2{{x}^{2}}-2x+4}{x-3}\]?
Answer
533.7k+ views
Hint: In this problem, we have to divide the given polynomial function and to find the factor. We can use the polynomial long division method as we have a factor as the divisor. We can get the quotient terms, which are the terms when multiplied to the divisor will provide the consecutive steps to bring down the terms to get the remainder.
Complete step-by-step solution:
We know that the given division is,
\[\dfrac{3{{x}^{3}}+2{{x}^{2}}-2x+4}{x-3}\]
Now we can set up the polynomials to be divided in long division, we get
\[x-3\overset{{}}{\overline{\left){3{{x}^{3}}+2{{x}^{2}}-2x+4}\right.}}\]
Now we can divide the highest order term in the dividend 3\[{{x}^{3}}\] by the highest order term in the divisor x, we get
\[x-3\overset{3{{x}^{2}}}{\overline{\left){3{{x}^{3}}+2{{x}^{2}}-2x+4}\right.}}\]
We can now multiply the quotient term to the divisor, we get
\[x-3\overset{3{{x}^{2}}}{\overline{\left){\begin{align}
& 3{{x}^{3}}+2{{x}^{2}}-2x+4 \\
& 3{{x}^{3}}-9{{x}^{2}} \\
\end{align}}\right.}}\]
We know that the expression is to be subtracted in the dividend, so we can change the sign in \[3{{x}^{3}}-9{{x}^{2}}\], we get
\[\begin{align}
& x-3\overset{3{{x}^{2}}}{\overline{\left){\begin{align}
& 3{{x}^{3}}+2{{x}^{2}}-2x+4 \\
& \underline{-3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\; 11{{x}^{2}} \\
\end{align}\]
Now we can bring down the next term from the dividend to the current dividend,
\[\begin{align}
& x-3\overset{3{{x}^{2}}}{\overline{\left){\begin{align}
& 3{{x}^{3}}+2{{x}^{2}}-2x+4 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 11{{x}^{2}}-2x \\
\end{align}\]
Now we should divide the highest order term in the dividend \[11{{x}^{2}}\] by the divisor x, we get
\[\begin{align}
& x-3\overset{3{{x}^{2}}+11x}{\overline{\left){\begin{align}
& 3{{x}^{3}}+2{{x}^{2}}-2x+4 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 11{{x}^{2}}-2x \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \underline{11{{x}^{2}}-33x} \\
\end{align}\]
We can now multiply the new quotient to the divisor, then subtract those expression to get the next dividend value, we get
\[\begin{align}
& x-3\overset{3{{x}^{2}}+11x}{\overline{\left){\begin{align}
& 3{{x}^{3}}+2{{x}^{2}}-2x+4 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 11{{x}^{2}}-2x \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; -\underline{11{{x}^{2}}+33x} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 31x \\
\end{align}\]
Now we can bring down the next term to the current dividend, we can divide the highest order term in the dividend 31x by the divisor x and we can multiply the new quotient term by the divisor.
Subtract the expression to get the remainder
\[\begin{align}
& x-3\overset{3{{x}^{2}}+12x+31}{\overline{\left){\begin{align}
& 3{{x}^{3}}+2{{x}^{2}}-2x+4 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;11{{x}^{2}}-2x \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\underline{11{{x}^{2}}-36x} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 31x+4 \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \underline{31x-93} \\
\end{align}\]
Now we can subtract the last step by changing the signs, we get
\[\begin{align}
& x-3\overset{3{{x}^{2}}+12x+31}{\overline{\left){\begin{align}
& 3{{x}^{3}}+2{{x}^{2}}-2x+4 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 11{{x}^{2}}-2x \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \underline{11{{x}^{2}}-36x} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 31x+4 \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\underline{31x-93} \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 97 \\
\end{align}\]
We know that dividend is equal to quotient plus the remainder over the divisor.
Therefore, the final answer is \[\left( 3{{x}^{2}}+11x+31 \right) -\dfrac{97}{x-3}\].
Note: We should also remember that the formula is Dividend = Quotient + Remainder/Divisor. Students make mistakes while finding the answer using polynomial long division. We should know how to find the answer using polynomial long division step by step. We will also make mistakes while hanging the signs in order to cancel the step consequently.
Complete step-by-step solution:
We know that the given division is,
\[\dfrac{3{{x}^{3}}+2{{x}^{2}}-2x+4}{x-3}\]
Now we can set up the polynomials to be divided in long division, we get
\[x-3\overset{{}}{\overline{\left){3{{x}^{3}}+2{{x}^{2}}-2x+4}\right.}}\]
Now we can divide the highest order term in the dividend 3\[{{x}^{3}}\] by the highest order term in the divisor x, we get
\[x-3\overset{3{{x}^{2}}}{\overline{\left){3{{x}^{3}}+2{{x}^{2}}-2x+4}\right.}}\]
We can now multiply the quotient term to the divisor, we get
\[x-3\overset{3{{x}^{2}}}{\overline{\left){\begin{align}
& 3{{x}^{3}}+2{{x}^{2}}-2x+4 \\
& 3{{x}^{3}}-9{{x}^{2}} \\
\end{align}}\right.}}\]
We know that the expression is to be subtracted in the dividend, so we can change the sign in \[3{{x}^{3}}-9{{x}^{2}}\], we get
\[\begin{align}
& x-3\overset{3{{x}^{2}}}{\overline{\left){\begin{align}
& 3{{x}^{3}}+2{{x}^{2}}-2x+4 \\
& \underline{-3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\; 11{{x}^{2}} \\
\end{align}\]
Now we can bring down the next term from the dividend to the current dividend,
\[\begin{align}
& x-3\overset{3{{x}^{2}}}{\overline{\left){\begin{align}
& 3{{x}^{3}}+2{{x}^{2}}-2x+4 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 11{{x}^{2}}-2x \\
\end{align}\]
Now we should divide the highest order term in the dividend \[11{{x}^{2}}\] by the divisor x, we get
\[\begin{align}
& x-3\overset{3{{x}^{2}}+11x}{\overline{\left){\begin{align}
& 3{{x}^{3}}+2{{x}^{2}}-2x+4 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 11{{x}^{2}}-2x \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \underline{11{{x}^{2}}-33x} \\
\end{align}\]
We can now multiply the new quotient to the divisor, then subtract those expression to get the next dividend value, we get
\[\begin{align}
& x-3\overset{3{{x}^{2}}+11x}{\overline{\left){\begin{align}
& 3{{x}^{3}}+2{{x}^{2}}-2x+4 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 11{{x}^{2}}-2x \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; -\underline{11{{x}^{2}}+33x} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 31x \\
\end{align}\]
Now we can bring down the next term to the current dividend, we can divide the highest order term in the dividend 31x by the divisor x and we can multiply the new quotient term by the divisor.
Subtract the expression to get the remainder
\[\begin{align}
& x-3\overset{3{{x}^{2}}+12x+31}{\overline{\left){\begin{align}
& 3{{x}^{3}}+2{{x}^{2}}-2x+4 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;11{{x}^{2}}-2x \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\underline{11{{x}^{2}}-36x} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 31x+4 \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \underline{31x-93} \\
\end{align}\]
Now we can subtract the last step by changing the signs, we get
\[\begin{align}
& x-3\overset{3{{x}^{2}}+12x+31}{\overline{\left){\begin{align}
& 3{{x}^{3}}+2{{x}^{2}}-2x+4 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 11{{x}^{2}}-2x \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \underline{11{{x}^{2}}-36x} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 31x+4 \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\underline{31x-93} \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 97 \\
\end{align}\]
We know that dividend is equal to quotient plus the remainder over the divisor.
Therefore, the final answer is \[\left( 3{{x}^{2}}+11x+31 \right) -\dfrac{97}{x-3}\].
Note: We should also remember that the formula is Dividend = Quotient + Remainder/Divisor. Students make mistakes while finding the answer using polynomial long division. We should know how to find the answer using polynomial long division step by step. We will also make mistakes while hanging the signs in order to cancel the step consequently.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

