
How do you divide \[3{{x}^{3}}-3{{x}^{2}}-4x+3\] by \[x+3\]?
Answer
534.9k+ views
Hint: In this problem, we have to divide the given polynomial and find the factor. We can use the polynomial long division method to divide the given problem. We can first set up the polynomials to be divided in long division and we can divide the highest order term in the dividend by the highest order term in the divisor for every term by bringing it down step by step.
Complete step-by-step solution:
We know that the given division is,
\[\dfrac{3{{x}^{3}}-3{{x}^{2}}-4x+3}{x+3}\]
Now we can set up the polynomials to be divided in long division, we get
\[x+3\overset{{}}{\overline{\left){3{{x}^{3}}-3{{x}^{2}}-4x+3}\right.}}\]
Now we can divide the highest order term in the dividend 3\[{{x}^{3}}\] by the highest order term in the divisor x, we get
\[x+3\overset{3{{x}^{2}}}{\overline{\left){3{{x}^{3}}-3{{x}^{2}}-4x+3}\right.}}\]
We can now multiply the quotient term to the divisor, we get
\[x+3\overset{3{{x}^{2}}}{\overline{\left){\begin{align}
& 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
& 3{{x}^{3}}+9{{x}^{2}} \\
\end{align}}\right.}}\]
We know that the expression is to be subtracted in the dividend, so we can change the sign in \[3{{x}^{3}}+9{{x}^{2}}\], we get
\[\begin{align}
& x+3\overset{3{{x}^{2}}}{\overline{\left){\begin{align}
& 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\; -12{{x}^{2}} \\
\end{align}\]
Now we can bring down the next term from the dividend to the current dividend,
\[\begin{align}
& x+3\overset{3{{x}^{2}}}{\overline{\left){\begin{align}
& 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;-12{{x}^{2}}-4x \\
\end{align}\]
Now we should divide the highest order term in the dividend \[-12{{x}^{2}}\] by the divisor x, we get
\[\begin{align}
& x+3\overset{3{{x}^{2}}-12x}{\overline{\left){\begin{align}
& 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; -12{{x}^{2}}-4x \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \underline{-12{{x}^{2}}-36x} \\
\end{align}\]
We can now multiply the new quotient to the divisor, then subtract those expression to get the next dividend value, we get
\[\begin{align}
& x+3\overset{3{{x}^{2}}-12x}{\overline{\left){\begin{align}
& 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\; -12{{x}^{2}}-4x \\
& \;\;\;\;\;\;\;\;\;\;\;\;\; \underline{-12{{x}^{2}}-36x} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 32x \\
\end{align}\]
Now we can bring down the next term to the current dividend, we can divide the highest order term in the dividend 32x by the divisor x and we can multiply the new quotient term by the divisor.
Subtract the expression to get the remainder
\[\begin{align}
& x+3\overset{3{{x}^{2}}-12x+32}{\overline{\left){\begin{align}
& 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\; -12{{x}^{2}}-4x \\
& \;\;\;\;\;\;\;\;\;\;\;\;\; \underline{-12{{x}^{2}}-36x} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 32x+3 \\
\end{align}\]
Now we can subtract the last step by changing the signs, we get
\[\begin{align}
& x+3\overset{3{{x}^{2}}-12x+32}{\overline{\left){\begin{align}
& 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\; -12{{x}^{2}}-4x \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\underline{-12{{x}^{2}}-36x} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;32x+3 \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\underline{\text{ }-32x-96} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; {-93} \\
\end{align}\]
We know that dividend is equal to quotient plus the remainder over the divisor.
Therefore, the final answer is \[\left( 3{{x}^{2}}-12x+32\right) -\dfrac{93}{x+3}\].
Note: Students make mistakes while finding the answer using polynomial long division. We should know how to find the answer using polynomial long division step by step. We should also remember that the formula is Dividend = Quotient + Remainder/Divisor.
Complete step-by-step solution:
We know that the given division is,
\[\dfrac{3{{x}^{3}}-3{{x}^{2}}-4x+3}{x+3}\]
Now we can set up the polynomials to be divided in long division, we get
\[x+3\overset{{}}{\overline{\left){3{{x}^{3}}-3{{x}^{2}}-4x+3}\right.}}\]
Now we can divide the highest order term in the dividend 3\[{{x}^{3}}\] by the highest order term in the divisor x, we get
\[x+3\overset{3{{x}^{2}}}{\overline{\left){3{{x}^{3}}-3{{x}^{2}}-4x+3}\right.}}\]
We can now multiply the quotient term to the divisor, we get
\[x+3\overset{3{{x}^{2}}}{\overline{\left){\begin{align}
& 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
& 3{{x}^{3}}+9{{x}^{2}} \\
\end{align}}\right.}}\]
We know that the expression is to be subtracted in the dividend, so we can change the sign in \[3{{x}^{3}}+9{{x}^{2}}\], we get
\[\begin{align}
& x+3\overset{3{{x}^{2}}}{\overline{\left){\begin{align}
& 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\; -12{{x}^{2}} \\
\end{align}\]
Now we can bring down the next term from the dividend to the current dividend,
\[\begin{align}
& x+3\overset{3{{x}^{2}}}{\overline{\left){\begin{align}
& 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;-12{{x}^{2}}-4x \\
\end{align}\]
Now we should divide the highest order term in the dividend \[-12{{x}^{2}}\] by the divisor x, we get
\[\begin{align}
& x+3\overset{3{{x}^{2}}-12x}{\overline{\left){\begin{align}
& 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; -12{{x}^{2}}-4x \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \underline{-12{{x}^{2}}-36x} \\
\end{align}\]
We can now multiply the new quotient to the divisor, then subtract those expression to get the next dividend value, we get
\[\begin{align}
& x+3\overset{3{{x}^{2}}-12x}{\overline{\left){\begin{align}
& 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\; -12{{x}^{2}}-4x \\
& \;\;\;\;\;\;\;\;\;\;\;\;\; \underline{-12{{x}^{2}}-36x} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 32x \\
\end{align}\]
Now we can bring down the next term to the current dividend, we can divide the highest order term in the dividend 32x by the divisor x and we can multiply the new quotient term by the divisor.
Subtract the expression to get the remainder
\[\begin{align}
& x+3\overset{3{{x}^{2}}-12x+32}{\overline{\left){\begin{align}
& 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\; -12{{x}^{2}}-4x \\
& \;\;\;\;\;\;\;\;\;\;\;\;\; \underline{-12{{x}^{2}}-36x} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 32x+3 \\
\end{align}\]
Now we can subtract the last step by changing the signs, we get
\[\begin{align}
& x+3\overset{3{{x}^{2}}-12x+32}{\overline{\left){\begin{align}
& 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
& \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\; -12{{x}^{2}}-4x \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\underline{-12{{x}^{2}}-36x} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;32x+3 \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\underline{\text{ }-32x-96} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; {-93} \\
\end{align}\]
We know that dividend is equal to quotient plus the remainder over the divisor.
Therefore, the final answer is \[\left( 3{{x}^{2}}-12x+32\right) -\dfrac{93}{x+3}\].
Note: Students make mistakes while finding the answer using polynomial long division. We should know how to find the answer using polynomial long division step by step. We should also remember that the formula is Dividend = Quotient + Remainder/Divisor.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

What are gulf countries and why they are called Gulf class 8 social science CBSE

