Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

How do you divide \[3{{x}^{3}}-3{{x}^{2}}-4x+3\] by \[x+3\]?

Answer
VerifiedVerified
534.9k+ views
Hint: In this problem, we have to divide the given polynomial and find the factor. We can use the polynomial long division method to divide the given problem. We can first set up the polynomials to be divided in long division and we can divide the highest order term in the dividend by the highest order term in the divisor for every term by bringing it down step by step.

Complete step-by-step solution:
We know that the given division is,
\[\dfrac{3{{x}^{3}}-3{{x}^{2}}-4x+3}{x+3}\]
Now we can set up the polynomials to be divided in long division, we get
\[x+3\overset{{}}{\overline{\left){3{{x}^{3}}-3{{x}^{2}}-4x+3}\right.}}\]
Now we can divide the highest order term in the dividend 3\[{{x}^{3}}\] by the highest order term in the divisor x, we get
\[x+3\overset{3{{x}^{2}}}{\overline{\left){3{{x}^{3}}-3{{x}^{2}}-4x+3}\right.}}\]
We can now multiply the quotient term to the divisor, we get
\[x+3\overset{3{{x}^{2}}}{\overline{\left){\begin{align}
  & 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
 & 3{{x}^{3}}+9{{x}^{2}} \\
\end{align}}\right.}}\]
We know that the expression is to be subtracted in the dividend, so we can change the sign in \[3{{x}^{3}}+9{{x}^{2}}\], we get
\[\begin{align}
  & x+3\overset{3{{x}^{2}}}{\overline{\left){\begin{align}
  & 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
 & \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
 & \;\;\;\;\;\;\;\;\;\;\;\;\;\; -12{{x}^{2}} \\
\end{align}\]
Now we can bring down the next term from the dividend to the current dividend,
\[\begin{align}
  & x+3\overset{3{{x}^{2}}}{\overline{\left){\begin{align}
  & 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
 & \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
 & \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;-12{{x}^{2}}-4x \\
\end{align}\]
Now we should divide the highest order term in the dividend \[-12{{x}^{2}}\] by the divisor x, we get
\[\begin{align}
  & x+3\overset{3{{x}^{2}}-12x}{\overline{\left){\begin{align}
  & 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
 & \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
 & \;\;\;\;\;\;\;\;\;\;\;\;\;\;\; -12{{x}^{2}}-4x \\
 & \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \underline{-12{{x}^{2}}-36x} \\
\end{align}\]
We can now multiply the new quotient to the divisor, then subtract those expression to get the next dividend value, we get
\[\begin{align}
  & x+3\overset{3{{x}^{2}}-12x}{\overline{\left){\begin{align}
  & 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
 & \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
 & \;\;\;\;\;\;\;\;\;\;\;\; -12{{x}^{2}}-4x \\
 & \;\;\;\;\;\;\;\;\;\;\;\;\; \underline{-12{{x}^{2}}-36x} \\
 & \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 32x \\
\end{align}\]
Now we can bring down the next term to the current dividend, we can divide the highest order term in the dividend 32x by the divisor x and we can multiply the new quotient term by the divisor.
Subtract the expression to get the remainder
\[\begin{align}
  & x+3\overset{3{{x}^{2}}-12x+32}{\overline{\left){\begin{align}
  & 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
 & \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
 & \;\;\;\;\;\;\;\;\;\;\;\;\; -12{{x}^{2}}-4x \\
 & \;\;\;\;\;\;\;\;\;\;\;\;\; \underline{-12{{x}^{2}}-36x} \\
 & \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 32x+3 \\
\end{align}\]
Now we can subtract the last step by changing the signs, we get
 \[\begin{align}
  & x+3\overset{3{{x}^{2}}-12x+32}{\overline{\left){\begin{align}
  & 3{{x}^{3}}-3{{x}^{2}}-4x+3 \\
 & \underline{3{{x}^{3}}+9{{x}^{2}}} \\
\end{align}}\right.}} \\
 & \;\;\;\;\;\;\;\;\;\;\;\; -12{{x}^{2}}-4x \\
 &\;\;\;\;\;\;\;\;\;\;\;\;\;\underline{-12{{x}^{2}}-36x} \\
 & \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;32x+3 \\
 & \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\underline{\text{ }-32x-96} \\
 & \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; {-93} \\
\end{align}\]
We know that dividend is equal to quotient plus the remainder over the divisor.
Therefore, the final answer is \[\left( 3{{x}^{2}}-12x+32\right) -\dfrac{93}{x+3}\].

Note: Students make mistakes while finding the answer using polynomial long division. We should know how to find the answer using polynomial long division step by step. We should also remember that the formula is Dividend = Quotient + Remainder/Divisor.