
How do you calculate \[\log 32\]?
Answer
545.4k+ views
Hint: The logarithm is defined as the power to which a number must be raised to obtain a particular number. For example \[{\log _{10}}100 = 2\] defines that \[10\] must be raised to power \[2\] to obtain the number \[100\]. The other example is \[{\log _2}8 = 3\]show that \[2\] must be raised to power \[3\] to obtain \[8\].
Here the objective is to calculate\[\log 32\]. To evaluate \[\log 32\] write \[32\] in the exponential form with the base of\[2\]. When the base of the logarithm is not given the base is considered naturally\[2\]. Then, apply the property of the logarithm to find the complete value of the\[\log 32\].
Complete step by step solution:
The given expression is c \[\log 32\].
Write the value of \[32\] in the exponential form as a multiple of 2.
We know that \[2\] multiplied \[5\] times by itself is\[32\]. This in the exponential form is written as \[32 = {2^5}\]
Then, the given term \[\log 32\] becomes\[\log {2^5}\].
Consider the property of logarithm as,
\[{\log _a}{b^x} = x{\log _a}b\]
Then, from the above property \[{\log _2}{2^5}\]is written as\[\log {32^5} = 5\log 2\].
Consider the value of \[\log 2 = 0.3010\].
Then, rewrite the logarithm \[\log {32^5} = 5\log 2\] as,
\[ \Rightarrow 5\log 2 = 5\left( {0.3010} \right)\]
\[\therefore 5\log 2 = 1.505\]
Thus, the value of \[\log 32 = 1.505\]
Note:
The exponent is the number of times a number can be multiplied by itself. For example consider a variable $a$ as $a \times a = {a^2}$, then ${a^n}$ represents $a$ multiplied by itself n number of times. The exponent form ${a^n}$ is pronounced as a raise to the power n. Where,
${a^0} = 1$ And ${a^1} = a$.
Here the objective is to calculate\[\log 32\]. To evaluate \[\log 32\] write \[32\] in the exponential form with the base of\[2\]. When the base of the logarithm is not given the base is considered naturally\[2\]. Then, apply the property of the logarithm to find the complete value of the\[\log 32\].
Complete step by step solution:
The given expression is c \[\log 32\].
Write the value of \[32\] in the exponential form as a multiple of 2.
We know that \[2\] multiplied \[5\] times by itself is\[32\]. This in the exponential form is written as \[32 = {2^5}\]
Then, the given term \[\log 32\] becomes\[\log {2^5}\].
Consider the property of logarithm as,
\[{\log _a}{b^x} = x{\log _a}b\]
Then, from the above property \[{\log _2}{2^5}\]is written as\[\log {32^5} = 5\log 2\].
Consider the value of \[\log 2 = 0.3010\].
Then, rewrite the logarithm \[\log {32^5} = 5\log 2\] as,
\[ \Rightarrow 5\log 2 = 5\left( {0.3010} \right)\]
\[\therefore 5\log 2 = 1.505\]
Thus, the value of \[\log 32 = 1.505\]
Note:
The exponent is the number of times a number can be multiplied by itself. For example consider a variable $a$ as $a \times a = {a^2}$, then ${a^n}$ represents $a$ multiplied by itself n number of times. The exponent form ${a^n}$ is pronounced as a raise to the power n. Where,
${a^0} = 1$ And ${a^1} = a$.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Full form of STD, ISD and PCO

What are gulf countries and why they are called Gulf class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

What is the difference between rai and mustard see class 8 biology CBSE

