Answer
Verified
409.8k+ views
Hint: The logarithm is defined as the power to which a number must be raised to obtain a particular number. For example \[{\log _{10}}100 = 2\] defines that \[10\] must be raised to power \[2\] to obtain the number \[100\]. The other example is \[{\log _2}8 = 3\]show that \[2\] must be raised to power \[3\] to obtain \[8\].
Here the objective is to calculate\[\log 32\]. To evaluate \[\log 32\] write \[32\] in the exponential form with the base of\[2\]. When the base of the logarithm is not given the base is considered naturally\[2\]. Then, apply the property of the logarithm to find the complete value of the\[\log 32\].
Complete step by step solution:
The given expression is c \[\log 32\].
Write the value of \[32\] in the exponential form as a multiple of 2.
We know that \[2\] multiplied \[5\] times by itself is\[32\]. This in the exponential form is written as \[32 = {2^5}\]
Then, the given term \[\log 32\] becomes\[\log {2^5}\].
Consider the property of logarithm as,
\[{\log _a}{b^x} = x{\log _a}b\]
Then, from the above property \[{\log _2}{2^5}\]is written as\[\log {32^5} = 5\log 2\].
Consider the value of \[\log 2 = 0.3010\].
Then, rewrite the logarithm \[\log {32^5} = 5\log 2\] as,
\[ \Rightarrow 5\log 2 = 5\left( {0.3010} \right)\]
\[\therefore 5\log 2 = 1.505\]
Thus, the value of \[\log 32 = 1.505\]
Note:
The exponent is the number of times a number can be multiplied by itself. For example consider a variable $a$ as $a \times a = {a^2}$, then ${a^n}$ represents $a$ multiplied by itself n number of times. The exponent form ${a^n}$ is pronounced as a raise to the power n. Where,
${a^0} = 1$ And ${a^1} = a$.
Here the objective is to calculate\[\log 32\]. To evaluate \[\log 32\] write \[32\] in the exponential form with the base of\[2\]. When the base of the logarithm is not given the base is considered naturally\[2\]. Then, apply the property of the logarithm to find the complete value of the\[\log 32\].
Complete step by step solution:
The given expression is c \[\log 32\].
Write the value of \[32\] in the exponential form as a multiple of 2.
We know that \[2\] multiplied \[5\] times by itself is\[32\]. This in the exponential form is written as \[32 = {2^5}\]
Then, the given term \[\log 32\] becomes\[\log {2^5}\].
Consider the property of logarithm as,
\[{\log _a}{b^x} = x{\log _a}b\]
Then, from the above property \[{\log _2}{2^5}\]is written as\[\log {32^5} = 5\log 2\].
Consider the value of \[\log 2 = 0.3010\].
Then, rewrite the logarithm \[\log {32^5} = 5\log 2\] as,
\[ \Rightarrow 5\log 2 = 5\left( {0.3010} \right)\]
\[\therefore 5\log 2 = 1.505\]
Thus, the value of \[\log 32 = 1.505\]
Note:
The exponent is the number of times a number can be multiplied by itself. For example consider a variable $a$ as $a \times a = {a^2}$, then ${a^n}$ represents $a$ multiplied by itself n number of times. The exponent form ${a^n}$ is pronounced as a raise to the power n. Where,
${a^0} = 1$ And ${a^1} = a$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE