
What happens to the gravitational force between two objects if the mass of both the objects is doubled and the distance between objects is tripled?
Answer
527.1k+ views
Hint:We will use Newton’s law of gravitation to solve the above problem. As we can clearly see, only a few variables are changed, that too are mass and distance between the two objects. Therefore we can easily calculate the resulting gravitational force between the two objects in terms of their gravitational force in the first case.
Complete answer:
Let the masses of the two objects be ${{m}_{1}}$ and ${{m}_{2}}$ respectively .
And let the distance between their centers be given by $r$ .
Then, using Newton’s law of gravitation, the force of attraction (say $F$ ) between the two objects can be given as:
$\Rightarrow F=G\dfrac{{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}$
Now, in the second case it is given in the problem that, the masses of the two objects have been doubled and the distance between them has been tripled. Therefore,
$\begin{align}
& \Rightarrow m_{1}^{'}=2{{m}_{1}} \\
& \Rightarrow m_{2}^{'}=2{{m}_{2}} \\
\end{align}$
Also,
$\Rightarrow {{r}^{'}}=3r$
Putting the value of these new masses of the two object and their new distance between the centers in Newton’s law of gravitation, we get the new force of attraction (say ${{F}^{'}}$ ):
$\begin{align}
& \Rightarrow {{F}^{'}}=G\dfrac{m_{1}^{'}m_{2}^{'}}{{{({{r}^{'}})}^{2}}} \\
& \Rightarrow {{F}^{'}}=G\dfrac{(2{{m}_{1}})(2{{m}_{2}})}{{{(3r)}^{2}}} \\
& \Rightarrow {{F}^{'}}=\dfrac{4}{9}G\dfrac{{{m}_{1}}{{m}_{2}}}{{{r}^{2}}} \\
& \Rightarrow {{F}^{'}}=\dfrac{4}{9}F \\
\end{align}$
Hence, the gravitational force becomes ${{\left( \dfrac{4}{9} \right)}^{th}}$ of the original.
Note:
These types of questions are simple questions of ratio and proportionality. The parameters are changed by a certain value so we need not worry if the absolute value of any parameter is known or unknown to us. We should just move ahead in our calculation with variables in our equations and at the end, all the unknown variables will disappear from our equation giving us the final result.
Complete answer:
Let the masses of the two objects be ${{m}_{1}}$ and ${{m}_{2}}$ respectively .
And let the distance between their centers be given by $r$ .
Then, using Newton’s law of gravitation, the force of attraction (say $F$ ) between the two objects can be given as:
$\Rightarrow F=G\dfrac{{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}$
Now, in the second case it is given in the problem that, the masses of the two objects have been doubled and the distance between them has been tripled. Therefore,
$\begin{align}
& \Rightarrow m_{1}^{'}=2{{m}_{1}} \\
& \Rightarrow m_{2}^{'}=2{{m}_{2}} \\
\end{align}$
Also,
$\Rightarrow {{r}^{'}}=3r$
Putting the value of these new masses of the two object and their new distance between the centers in Newton’s law of gravitation, we get the new force of attraction (say ${{F}^{'}}$ ):
$\begin{align}
& \Rightarrow {{F}^{'}}=G\dfrac{m_{1}^{'}m_{2}^{'}}{{{({{r}^{'}})}^{2}}} \\
& \Rightarrow {{F}^{'}}=G\dfrac{(2{{m}_{1}})(2{{m}_{2}})}{{{(3r)}^{2}}} \\
& \Rightarrow {{F}^{'}}=\dfrac{4}{9}G\dfrac{{{m}_{1}}{{m}_{2}}}{{{r}^{2}}} \\
& \Rightarrow {{F}^{'}}=\dfrac{4}{9}F \\
\end{align}$
Hence, the gravitational force becomes ${{\left( \dfrac{4}{9} \right)}^{th}}$ of the original.
Note:
These types of questions are simple questions of ratio and proportionality. The parameters are changed by a certain value so we need not worry if the absolute value of any parameter is known or unknown to us. We should just move ahead in our calculation with variables in our equations and at the end, all the unknown variables will disappear from our equation giving us the final result.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

