
What should the $ {H^ + } $ concentration be in solution that is $ 0.25\;M $ in $ C{o^{2 + }} $ to prevent the precipitation of $ CoS $ when the solution is saturated with $ {{\text{H}}_2}{\text{S}} $ . A saturated solution of $ {{\text{H}}_2}{\text{S}} $ is $ 0.1\;{\text{M}} $ :-
$ {{\text{K}}_{sp}}\left( {CoS} \right) = \;5 \times {10^{ - 22}} $ , $ {{\text{K}}_1}\left( {{{\text{H}}_2}{\text{S}}} \right) = \;1.1 \times {10^{ - 8}} $ , $ {{\text{K}}_2}\left( {{{\text{H}}_2}{\text{S}}} \right) = \;1.1 \times {10^{ - 13}} $
(A) $ 0.523 $
(B) $ 0.234 $
(C) $ 0.725 $
(D) $ 0.924 $
Answer
497.1k+ views
Hint: We are required to find the concentration of $ {H^ + } $ ions so that the precipitation of Cobalt sulphide $ CoS $ can be prevented. We will determine the concentration of $ {H^ + } $ ions by observing the reactions that are taking place here. We will calculate equilibrium constant for each reaction and by using we will find the concentration of each ion.
Complete answer:
Let’s write the values that are given to us
concentration of Cobalt in the solution, $ C{o^{2 + }} = \;0.25\;{\text{M}} $
concentration of Hydrogen sulphide, $ {{\text{H}}_2}{\text{S}}\; = \;0.1\;{\text{M}} $
Solubility product of Cobalt sulphide, $ {{\text{K}}_{sp}}\left( {CoS} \right) = \;5 \times {10^{ - 22}} $
Equilibrium constant for first reaction of Hydrogen sulphide, $ {{\text{K}}_1}\left( {{{\text{H}}_2}{\text{S}}} \right) = \;1.1 \times {10^{ - 8}} $
Equilibrium constant for second reaction of Hydrogen sulphide, $ {{\text{K}}_2}\left( {{{\text{H}}_2}{\text{S}}} \right) = \;1.1 \times {10^{ - 13}} $
Let’s see the reactions:
first reaction: $ {{\text{H}}_2}{\text{S}}\; \rightleftharpoons \;{{\text{H}}^ + }\; + \;H{S^ - } $
second reaction: $ H{S^ - }\; \rightleftharpoons \;{{\text{H}}^ + }\; + \;{{\text{S}}^ - } $
adding both first and second reactions we get,
$ {{\text{H}}_2}{\text{S}}\; \rightleftharpoons \;2{{\text{H}}^ + }\; + \;{{\text{S}}^ - } $
calculating Equilibrium constant $ {\text{K}} $ for the above reaction
$ {\text{K}}\; = \;{{\text{K}}_1}\; \times \;{{\text{K}}_2} $
substituting given values in the above equation, we get
$ {\text{K}}\; = \;1.1\; \times \;{10^{ - 8}}\;\; \times \;1.1\; \times \;{10^{ - 13}} $
$ {\text{K}}\; = \;1.1\; \times \;{10^{ - 21}} $
Equilibrium constant for the combined reaction is obtained, now writing the formula of equilibrium constant for the combined reaction
$ {\text{K}}\; = \dfrac{{{{\left[ {{{\text{H}}^ + }} \right]}^2}\left[ {{{\text{S}}^ - }} \right]}}{{\left[ {{{\text{H}}_2}{\text{S}}} \right]}} $ ……… (first)
Let's take the above equation as the first equation.
From the formula of the Solubility product of Cobalt sulphide, we will calculate the concentration of sulphide ion as it is unknown.
$ {{\text{K}}_{sp}}\;\left( {CoS} \right) = \left[ {C{o^{2 + }}} \right]\left[ {{{\text{S}}^ - }} \right] $
substituting given values in the above formula, we get
$ \left[ {{{\text{S}}^ - }} \right] = \dfrac{{5\; \times \;{{10}^{ - 22}}}}{{0.25}} $
$ \left[ {{{\text{S}}^ - }} \right] = \;20\; \times \;{10^{ - 22}} $
putting the obtained value of concentration of sulphide ion and equilibrium constant in first equation, we have
$ 1.1\; \times \;{10^{ - 21}}\; = \dfrac{{\;20\; \times \;{{10}^{ - 22\;}}{{\left[ {{{\text{H}}^ + }} \right]}^2}}}{{0.1}} $
now calculating concentration of $ {H^ + } $ ions
$ {\left[ {{{\text{H}}^ + }} \right]^2}\; = \dfrac{{\;1.1\; \times \;{{10}^{ - 21}}\; \times \;0.1}}{{20\; \times \;{{10}^{ - 22\;}}}} $
$ \left[ {{{\text{H}}^ + }} \right]\;\; = \;0.234 $
The concentration of $ {H^ + } $ ions is $ \;0.234 $ .
So, option (B) is the correct answer.
Note:
Carefully observe the reactions to calculate the equilibrium constant of the reaction, when two reactions are combined the equilibrium constant of the combined reaction is given by product of the equilibrium constant of the first and second reaction.
Complete answer:
Let’s write the values that are given to us
concentration of Cobalt in the solution, $ C{o^{2 + }} = \;0.25\;{\text{M}} $
concentration of Hydrogen sulphide, $ {{\text{H}}_2}{\text{S}}\; = \;0.1\;{\text{M}} $
Solubility product of Cobalt sulphide, $ {{\text{K}}_{sp}}\left( {CoS} \right) = \;5 \times {10^{ - 22}} $
Equilibrium constant for first reaction of Hydrogen sulphide, $ {{\text{K}}_1}\left( {{{\text{H}}_2}{\text{S}}} \right) = \;1.1 \times {10^{ - 8}} $
Equilibrium constant for second reaction of Hydrogen sulphide, $ {{\text{K}}_2}\left( {{{\text{H}}_2}{\text{S}}} \right) = \;1.1 \times {10^{ - 13}} $
Let’s see the reactions:
first reaction: $ {{\text{H}}_2}{\text{S}}\; \rightleftharpoons \;{{\text{H}}^ + }\; + \;H{S^ - } $
second reaction: $ H{S^ - }\; \rightleftharpoons \;{{\text{H}}^ + }\; + \;{{\text{S}}^ - } $
adding both first and second reactions we get,
$ {{\text{H}}_2}{\text{S}}\; \rightleftharpoons \;2{{\text{H}}^ + }\; + \;{{\text{S}}^ - } $
calculating Equilibrium constant $ {\text{K}} $ for the above reaction
$ {\text{K}}\; = \;{{\text{K}}_1}\; \times \;{{\text{K}}_2} $
substituting given values in the above equation, we get
$ {\text{K}}\; = \;1.1\; \times \;{10^{ - 8}}\;\; \times \;1.1\; \times \;{10^{ - 13}} $
$ {\text{K}}\; = \;1.1\; \times \;{10^{ - 21}} $
Equilibrium constant for the combined reaction is obtained, now writing the formula of equilibrium constant for the combined reaction
$ {\text{K}}\; = \dfrac{{{{\left[ {{{\text{H}}^ + }} \right]}^2}\left[ {{{\text{S}}^ - }} \right]}}{{\left[ {{{\text{H}}_2}{\text{S}}} \right]}} $ ……… (first)
Let's take the above equation as the first equation.
From the formula of the Solubility product of Cobalt sulphide, we will calculate the concentration of sulphide ion as it is unknown.
$ {{\text{K}}_{sp}}\;\left( {CoS} \right) = \left[ {C{o^{2 + }}} \right]\left[ {{{\text{S}}^ - }} \right] $
substituting given values in the above formula, we get
$ \left[ {{{\text{S}}^ - }} \right] = \dfrac{{5\; \times \;{{10}^{ - 22}}}}{{0.25}} $
$ \left[ {{{\text{S}}^ - }} \right] = \;20\; \times \;{10^{ - 22}} $
putting the obtained value of concentration of sulphide ion and equilibrium constant in first equation, we have
$ 1.1\; \times \;{10^{ - 21}}\; = \dfrac{{\;20\; \times \;{{10}^{ - 22\;}}{{\left[ {{{\text{H}}^ + }} \right]}^2}}}{{0.1}} $
now calculating concentration of $ {H^ + } $ ions
$ {\left[ {{{\text{H}}^ + }} \right]^2}\; = \dfrac{{\;1.1\; \times \;{{10}^{ - 21}}\; \times \;0.1}}{{20\; \times \;{{10}^{ - 22\;}}}} $
$ \left[ {{{\text{H}}^ + }} \right]\;\; = \;0.234 $
The concentration of $ {H^ + } $ ions is $ \;0.234 $ .
So, option (B) is the correct answer.
Note:
Carefully observe the reactions to calculate the equilibrium constant of the reaction, when two reactions are combined the equilibrium constant of the combined reaction is given by product of the equilibrium constant of the first and second reaction.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

