
How do you graph \[y = 3{\left( {x + 3} \right)^2} - 3\] ?
Answer
518.4k+ views
Hint: Here in this question, we have to plot a graph for the given equation. The given equation resembles or recognised as the standard equation for a parabola, which is \[f\left( x \right) = a{\left( {x - h} \right)^2} + k\] , where \[\left( {h,k} \right)\] is the vertex of the parabola and next find the focus, directrix and the points to plot the required graph.
Complete step-by-step answer:
We know, in the quadratic equation \[f\left( x \right) = a{x^2} + bx + c\] , a b and c are the constants and \[x\] is the variable. So, by finding the different values of \[x\] and corresponding values of \[y\] or \[f\left( x \right)\] , we can plot all the points in the graph and by joining all of them we can get the required shape.
here Parabola Formula for the equation of a parabola given in its standard form \[f\left( x \right) = a{x^2} + bx + c\] is:
Vertex of Parabola = \[\left( {\dfrac{{ - b}}{{2a}},\dfrac{{4ac - {b^2}}}{{4a}}} \right)\]
Focus of the parabola = \[\left( {\dfrac{{ - b}}{{2a}},\dfrac{{4ac - {b^2} + 1}}{{4a}}} \right)\]
Directrix of parabola \[y = \dfrac{{4ac - {b^2} - 1}}{{4a}}\]
Now Consider, the given equation
\[ \Rightarrow \,y = 3{\left( {x + 3} \right)^2} - 3\]
On expanding \[{\left( {x + 3} \right)^2}\] using identities \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[ \Rightarrow \,y = 3\left( {{x^2} + {3^2} + 2\left( x \right)\left( 3 \right)} \right) - 3\]
\[ \Rightarrow \,y = 3\left( {{x^2} + 9 + 6x} \right) - 3\]
\[ \Rightarrow \,y = 3{x^2} + 27 + 18x - 3\]
On simplification, we get
\[ \Rightarrow \,y = 3{x^2} + 18x + 24\]
Where, \[a = 3\] , \[b = 18\] and \[c = 24\]
Vertex of Parabola = \[\left( {\dfrac{{ - b}}{{2a}},\dfrac{{4ac - {b^2}}}{{4a}}} \right)\]
\[ \Rightarrow \,\,\left( {\dfrac{{ - 18}}{{2\left( 3 \right)}},\dfrac{{4\left( 3 \right)\left( {24} \right) - {{\left( {18} \right)}^2}}}{{4\left( 3 \right)}}} \right)\]
\[ \Rightarrow \,\,\left( {\dfrac{{ - 18}}{6},\dfrac{{288 - 324}}{{12}}} \right)\]
\[ \Rightarrow \,\,\left( { - 3, - 3} \right)\]
Vertex = \[\left( { - 3, - 3} \right)\]
Focus of the parabola = \[\left( {\dfrac{{ - b}}{{2a}},\dfrac{{4ac - {b^2} + 1}}{{4a}}} \right)\]
\[ \Rightarrow \,\,\left( {\dfrac{{ - 18}}{{2\left( 3 \right)}},\dfrac{{4\left( 3 \right)\left( {24} \right) - {{\left( {18} \right)}^2} + 1}}{{4\left( 3 \right)}}} \right)\]
\[ \Rightarrow \,\,\left( {\dfrac{{ - 18}}{6},\dfrac{{288 - 324 + 1}}{{12}}} \right)\]
\[ \Rightarrow \,\,\left( {\dfrac{{ - 18}}{6},\dfrac{{ - 36 + 1}}{{12}}} \right)\]
\[ \Rightarrow \,\,\left( {\dfrac{{ - 18}}{6},\dfrac{{ - 35}}{{12}}} \right)\]
Focus = \[\left( {\dfrac{{ - 18}}{6},\dfrac{{ - 35}}{{12}}} \right)\]
Directrix of parabola \[y = \dfrac{{4ac - {b^2} - 1}}{{4a}}\]
\[ \Rightarrow \,\,\dfrac{{4\left( 3 \right)\left( {24} \right) - {{\left( {18} \right)}^2} - 1}}{{4\left( 3 \right)}}\]
\[ \Rightarrow \,\,\dfrac{{288 - 324 - 1}}{{12}}\]
\[ \Rightarrow \,\,\dfrac{{ - 36 - 1}}{{12}}\]
\[ \Rightarrow \,\,\dfrac{{ - 37}}{{12}}\]
Directrix \[y = \dfrac{{ - 37}}{{12}}\]
Now putting in different values for x in the equation \[y = 3{\left( {x + 3} \right)^2} - 3\] and calculate the corresponding values for y.
When \[x = - 5 \Rightarrow y = 3{\left( { - 5 + 3} \right)^2} - 3 \Rightarrow y = 9\]
When \[x = - 4 \Rightarrow y = 3{\left( { - 4 + 3} \right)^2} - 3 \Rightarrow y = 0\]
When \[x = - 3 \Rightarrow y = 3{\left( { - 3 + 3} \right)^2} - 3 \Rightarrow y = - 3\]
When \[x = - 2 \Rightarrow y = 3{\left( { - 2 + 3} \right)^2} - 3 \Rightarrow y = 0\]
When \[x = - 1 \Rightarrow y = 3{\left( { - 1 + 3} \right)^2} - 3 \Rightarrow y = 9\]
Now, plot the required graph:
we determine the values and finally we obtain the linear equation for y and hence we can plot the graph.
Note: The plotting of a graph is different here. When we plot the graph for the parabola we use different methods. Here in this question Vertex of Parabola = \[\left( {\dfrac{{ - b}}{{2a}},\dfrac{{4ac - {b^2}}}{{4a}}} \right)\] , Focus of the parabola = \[\left( {\dfrac{{ - b}}{{2a}},\dfrac{{4ac - {b^2} + 1}}{{4a}}} \right)\] , Directrix of parabola \[y = \dfrac{{4ac - {b^2} - 1}}{{4a}}\]
Complete step-by-step answer:
We know, in the quadratic equation \[f\left( x \right) = a{x^2} + bx + c\] , a b and c are the constants and \[x\] is the variable. So, by finding the different values of \[x\] and corresponding values of \[y\] or \[f\left( x \right)\] , we can plot all the points in the graph and by joining all of them we can get the required shape.
here Parabola Formula for the equation of a parabola given in its standard form \[f\left( x \right) = a{x^2} + bx + c\] is:
Vertex of Parabola = \[\left( {\dfrac{{ - b}}{{2a}},\dfrac{{4ac - {b^2}}}{{4a}}} \right)\]
Focus of the parabola = \[\left( {\dfrac{{ - b}}{{2a}},\dfrac{{4ac - {b^2} + 1}}{{4a}}} \right)\]
Directrix of parabola \[y = \dfrac{{4ac - {b^2} - 1}}{{4a}}\]
Now Consider, the given equation
\[ \Rightarrow \,y = 3{\left( {x + 3} \right)^2} - 3\]
On expanding \[{\left( {x + 3} \right)^2}\] using identities \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[ \Rightarrow \,y = 3\left( {{x^2} + {3^2} + 2\left( x \right)\left( 3 \right)} \right) - 3\]
\[ \Rightarrow \,y = 3\left( {{x^2} + 9 + 6x} \right) - 3\]
\[ \Rightarrow \,y = 3{x^2} + 27 + 18x - 3\]
On simplification, we get
\[ \Rightarrow \,y = 3{x^2} + 18x + 24\]
Where, \[a = 3\] , \[b = 18\] and \[c = 24\]
Vertex of Parabola = \[\left( {\dfrac{{ - b}}{{2a}},\dfrac{{4ac - {b^2}}}{{4a}}} \right)\]
\[ \Rightarrow \,\,\left( {\dfrac{{ - 18}}{{2\left( 3 \right)}},\dfrac{{4\left( 3 \right)\left( {24} \right) - {{\left( {18} \right)}^2}}}{{4\left( 3 \right)}}} \right)\]
\[ \Rightarrow \,\,\left( {\dfrac{{ - 18}}{6},\dfrac{{288 - 324}}{{12}}} \right)\]
\[ \Rightarrow \,\,\left( { - 3, - 3} \right)\]
Vertex = \[\left( { - 3, - 3} \right)\]
Focus of the parabola = \[\left( {\dfrac{{ - b}}{{2a}},\dfrac{{4ac - {b^2} + 1}}{{4a}}} \right)\]
\[ \Rightarrow \,\,\left( {\dfrac{{ - 18}}{{2\left( 3 \right)}},\dfrac{{4\left( 3 \right)\left( {24} \right) - {{\left( {18} \right)}^2} + 1}}{{4\left( 3 \right)}}} \right)\]
\[ \Rightarrow \,\,\left( {\dfrac{{ - 18}}{6},\dfrac{{288 - 324 + 1}}{{12}}} \right)\]
\[ \Rightarrow \,\,\left( {\dfrac{{ - 18}}{6},\dfrac{{ - 36 + 1}}{{12}}} \right)\]
\[ \Rightarrow \,\,\left( {\dfrac{{ - 18}}{6},\dfrac{{ - 35}}{{12}}} \right)\]
Focus = \[\left( {\dfrac{{ - 18}}{6},\dfrac{{ - 35}}{{12}}} \right)\]
Directrix of parabola \[y = \dfrac{{4ac - {b^2} - 1}}{{4a}}\]
\[ \Rightarrow \,\,\dfrac{{4\left( 3 \right)\left( {24} \right) - {{\left( {18} \right)}^2} - 1}}{{4\left( 3 \right)}}\]
\[ \Rightarrow \,\,\dfrac{{288 - 324 - 1}}{{12}}\]
\[ \Rightarrow \,\,\dfrac{{ - 36 - 1}}{{12}}\]
\[ \Rightarrow \,\,\dfrac{{ - 37}}{{12}}\]
Directrix \[y = \dfrac{{ - 37}}{{12}}\]
Now putting in different values for x in the equation \[y = 3{\left( {x + 3} \right)^2} - 3\] and calculate the corresponding values for y.
When \[x = - 5 \Rightarrow y = 3{\left( { - 5 + 3} \right)^2} - 3 \Rightarrow y = 9\]
When \[x = - 4 \Rightarrow y = 3{\left( { - 4 + 3} \right)^2} - 3 \Rightarrow y = 0\]
When \[x = - 3 \Rightarrow y = 3{\left( { - 3 + 3} \right)^2} - 3 \Rightarrow y = - 3\]
When \[x = - 2 \Rightarrow y = 3{\left( { - 2 + 3} \right)^2} - 3 \Rightarrow y = 0\]
When \[x = - 1 \Rightarrow y = 3{\left( { - 1 + 3} \right)^2} - 3 \Rightarrow y = 9\]
| \[x\] | \[ - 5\] | \[ - 4\] | \[ - 3\] | \[ - 2\] | \[ - 1\] |
| \[y\] | \[9\] | \[0\] | \[ - 3\] | \[0\] | \[9\] |
| \[\left( {x,y} \right)\] | \[\left( { - 5,9} \right)\] | \[\left( { - 4,0} \right)\] | \[\left( { - 3, - 3} \right)\] | \[\left( { - 2,0} \right)\] | \[\left( { - 1,9} \right)\] |
Now, plot the required graph:
we determine the values and finally we obtain the linear equation for y and hence we can plot the graph.
Note: The plotting of a graph is different here. When we plot the graph for the parabola we use different methods. Here in this question Vertex of Parabola = \[\left( {\dfrac{{ - b}}{{2a}},\dfrac{{4ac - {b^2}}}{{4a}}} \right)\] , Focus of the parabola = \[\left( {\dfrac{{ - b}}{{2a}},\dfrac{{4ac - {b^2} + 1}}{{4a}}} \right)\] , Directrix of parabola \[y = \dfrac{{4ac - {b^2} - 1}}{{4a}}\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

