
How do you graph $r = 1 - \sin \left( \theta \right)$ ?
Answer
557.7k+ views
Hint:The given expression is $r = 1 - \sin \left( \theta \right)$ which produces a cardioid. In the given expression $r = 1 - \sin \left( \theta \right)$ try to substitute different values for $\theta $ and find the corresponding values of $r$ and plot the graph for the same values.
Complete step by step answer:
The given expression that is $r = 1 - \sin \left( \theta \right)$ which is a polar coordinate produces the cardioid. Cardioid is nothing but a curve or a graph that somewhat looks like a heart-shaped curve.
The graph of a cardioid looks as shown below.
Now, to draw a graph for $r = 1 - \sin \left( \theta \right)$ , try to substitute different values for $\theta $ which varies from $0$ to $2\pi $.
The below table gives us the values of sine function for different values:
$\begin{array}{*{20}{c}}
\theta &{{0^ \circ }}&{{{30}^ \circ }}&{{{45}^ \circ }}&{{{60}^ \circ }}&{{{90}^ \circ }}&{{{180}^ \circ }}&{{{270}^ \circ }}&{{{360}^ \circ }} \\
{\sin \theta }&0&{\dfrac{1}{2}}&{\dfrac{{\sqrt 2 }}{2}}&{\dfrac{1}{2}}&1&0&{ - 1}&0
\end{array}$
Now we consider different values for $\theta $ to which we need to find the corresponding values of $r$ .
So let $\theta = 0$ now to find the corresponding value of $r$ we can write as below,
$ \Rightarrow r = 1 - \sin \left( {{0^ \circ }} \right) = 1 - 0 = 1$
At $\theta = {30^ \circ }$ the value of $r$ is
$ \Rightarrow r = 1 - \sin \left( {{{30}^ \circ }} \right) = 1 - \dfrac{1}{2} = \dfrac{1}{2}$
At $\theta = {60^ \circ }$ the value of $r$ is
$ \Rightarrow r = 1 - \sin \left( {{{30}^ \circ }} \right) = 1 - \dfrac{1}{2} = \dfrac{1}{2}$
At $\theta = {90^ \circ }$ the value of $r$ we get as
$ \Rightarrow r = 1 - \sin \left( {{{90}^ \circ }} \right) = 1 - 1 = 0$
In the same way the values of $r$ can be listed as below for different values of $\theta $ .
\[\begin{array}{*{20}{c}}
\theta &{{0^ \circ }}&{{{30}^ \circ }}&{{{60}^ \circ }}&{{{90}^ \circ }}&{{{180}^ \circ }}&{{{270}^ \circ }}&{{{360}^ \circ }} \\
r&1&{\dfrac{1}{2}}&{\dfrac{1}{2}}&0&1&2&1
\end{array}\]
Now, plot the graph for the above values. Which is shown as in the below figure.
Therefore, the graph for the given expression $r = 1 - \sin \left( \theta \right)$ is as shown in the above figure.
Note: Whenever they ask us to draw a graph by giving an equation, then just take some values for one unknown that is for $\theta $ in the given equation and find the corresponding values of another unknown that is $r$ in this problem. Plot the same on a graph sheet as we did above.
Complete step by step answer:
The given expression that is $r = 1 - \sin \left( \theta \right)$ which is a polar coordinate produces the cardioid. Cardioid is nothing but a curve or a graph that somewhat looks like a heart-shaped curve.
The graph of a cardioid looks as shown below.
Now, to draw a graph for $r = 1 - \sin \left( \theta \right)$ , try to substitute different values for $\theta $ which varies from $0$ to $2\pi $.
The below table gives us the values of sine function for different values:
$\begin{array}{*{20}{c}}
\theta &{{0^ \circ }}&{{{30}^ \circ }}&{{{45}^ \circ }}&{{{60}^ \circ }}&{{{90}^ \circ }}&{{{180}^ \circ }}&{{{270}^ \circ }}&{{{360}^ \circ }} \\
{\sin \theta }&0&{\dfrac{1}{2}}&{\dfrac{{\sqrt 2 }}{2}}&{\dfrac{1}{2}}&1&0&{ - 1}&0
\end{array}$
Now we consider different values for $\theta $ to which we need to find the corresponding values of $r$ .
So let $\theta = 0$ now to find the corresponding value of $r$ we can write as below,
$ \Rightarrow r = 1 - \sin \left( {{0^ \circ }} \right) = 1 - 0 = 1$
At $\theta = {30^ \circ }$ the value of $r$ is
$ \Rightarrow r = 1 - \sin \left( {{{30}^ \circ }} \right) = 1 - \dfrac{1}{2} = \dfrac{1}{2}$
At $\theta = {60^ \circ }$ the value of $r$ is
$ \Rightarrow r = 1 - \sin \left( {{{30}^ \circ }} \right) = 1 - \dfrac{1}{2} = \dfrac{1}{2}$
At $\theta = {90^ \circ }$ the value of $r$ we get as
$ \Rightarrow r = 1 - \sin \left( {{{90}^ \circ }} \right) = 1 - 1 = 0$
In the same way the values of $r$ can be listed as below for different values of $\theta $ .
\[\begin{array}{*{20}{c}}
\theta &{{0^ \circ }}&{{{30}^ \circ }}&{{{60}^ \circ }}&{{{90}^ \circ }}&{{{180}^ \circ }}&{{{270}^ \circ }}&{{{360}^ \circ }} \\
r&1&{\dfrac{1}{2}}&{\dfrac{1}{2}}&0&1&2&1
\end{array}\]
Now, plot the graph for the above values. Which is shown as in the below figure.
Therefore, the graph for the given expression $r = 1 - \sin \left( \theta \right)$ is as shown in the above figure.
Note: Whenever they ask us to draw a graph by giving an equation, then just take some values for one unknown that is for $\theta $ in the given equation and find the corresponding values of another unknown that is $r$ in this problem. Plot the same on a graph sheet as we did above.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

