
Given $ z=\cos \left( \dfrac{2\pi }{2n+1} \right)+i\sin \left( \dfrac{2\pi }{2n+1} \right) $ where $ n $ a positive integer is find the equation whose roots are $ \alpha =z+{{z}^{3}}+...+{{z}^{2n-1}} $ and $ \beta ={{z}^{2}}+{{z}^{4}}+...+{{z}^{2n}} $ .
Answer
566.7k+ views
Hint: We use the identity $ {{\left( \cos \theta +i\sin \theta \right)}^{m}}=\cos m\theta +i\sin m\theta $ to find $ {{z}^{2n+1}} $ . We find $ \alpha +\beta $ using obtained $ {{z}^{2n+1}} $ and sum of $ n $ sum of $ n $ terms of a geometric progression(GP). We use sum of $ n $ terms of a GP with first term $ a $ and common ratio $ r $ as $ \dfrac{a\left( {{r}^{n}}-1 \right)}{r-1} $ to find $ \alpha \beta $ and then find the equation as $ {{z}^{2}}+\left( \alpha +\beta \right)z+\alpha \beta $ .
Complete step by step answer:
We are given the complex number in polar form as
\[z=\cos \left( \dfrac{2\pi }{2n+1} \right)+i\sin \left( \dfrac{2\pi }{2n+1} \right)\]
We use the identity $ {{\left( \cos \theta +i\sin \theta \right)}^{m}}=\cos m\theta +i\sin m\theta $ where $ m $ is an integer for $ \theta =\dfrac{2\pi }{2n+1} $ and $ n=2n+1 $ to have;
\[\begin{align}
& {{z}^{2n+1}}={{\left( \cos \left( \dfrac{2\pi }{2n+1} \right)+i\sin \left( \dfrac{2\pi }{2n+1} \right) \right)}^{2n+1}} \\
& \Rightarrow {{z}^{2n+1}}=\cos \left( \dfrac{2\pi }{2n+1}\times 2n+1 \right)+i\sin \left( \dfrac{2\pi }{2n+1}\times 2n+1 \right) \\
& \Rightarrow {{z}^{2n+1}}=\cos 2\pi +i\sin 2\pi =1+i\cdot 0=1 \\
\end{align}\]
We know from quadratic equations that if we are given two roots $ \alpha ,\beta $ then we can make a quadratic equation in variable $ x $ as $ {{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0 $ . So the required equation will be a complex quadratic equation of the form
\[{{z}^{2}}-\left( \alpha +\beta \right)z+\alpha \beta =0\]
We are given the expression for the roots $ \alpha =z+{{z}^{3}}+...+{{z}^{2n-1}} $ and $ \beta ={{z}^{2}}+{{z}^{4}}+...+{{z}^{2n}} $ . Let us find the sum of the roots as
\[\begin{align}
& \alpha +\beta =z+{{z}^{3}}+...+{{z}^{2n-1}}+{{z}^{2}}+{{z}^{4}}+...+{{z}^{2n}} \\
& \Rightarrow \alpha +\beta =z+{{z}^{2}}+{{z}^{3}}...+{{z}^{2n-1}}+{{z}^{2n}} \\
\end{align}\]
We add and subtract 1 in the right hand side of to have
\[\Rightarrow \alpha +\beta =1+z+{{z}^{2}}+{{z}^{3}}...+{{z}^{2n-1}}+{{z}^{2n}}-1\]
We use the sum of $ n $ terms of a GP formula for sum up to $ {{\left( 2n+1 \right)}^{th}} $ terms with first $ a=1 $ , common ratio of $ r=z $ in the right hand side to have;
\[\Rightarrow \alpha +\beta =\dfrac{1\cdot \left( {{z}^{2n+1}}-1 \right)}{z-1}-1\]
We put previously obtained $ {{z}^{2n+1}}=1 $ to have
\[\begin{align}
& \Rightarrow \alpha +\beta =\dfrac{1\cdot \left( 1-1 \right)}{z-1}-1 \\
& \Rightarrow \alpha +\beta =0-1=-1 \\
\end{align}\]
We express given $ \alpha =z+{{z}^{3}}+...+{{z}^{2n-1}} $ as the sum up to $ {{n}^{\text{th}}} $ term of a GP with first term $ a=z $ , common difference $ r={{z}^{2}} $ to have;
\[\alpha =\dfrac{z\left( {{z}^{n}}-1 \right)}{{{z}^{2}}-1}\]
We similarly express given $ \beta ={{z}^{2}}+{{z}^{4}}+...+{{z}^{2n}} $ as the sum up to $ {{n}^{\text{th}}} $ term of a GP with first term $ a={{z}^{2}} $ , common difference $ r={{z}^{2}} $ to have;
\[\alpha =\dfrac{{{z}^{3}}\left( {{z}^{n}}-1 \right)}{{{z}^{2}}-1}\]
So the product of the roots is
\[\begin{align}
& \alpha \beta =\dfrac{z\left( {{z}^{n}}-1 \right)}{{{z}^{2}}-1}\cdot \dfrac{{{z}^{2}}\left( {{z}^{n}}-1 \right)}{{{z}^{2}}-1} \\
& \Rightarrow \alpha \beta =\dfrac{{{z}^{3}}{{\left( {{z}^{n}}-1 \right)}^{2}}}{{{\left( {{z}^{2}}-1 \right)}^{2}}} \\
\end{align}\]
So the required complex equation is
\[\begin{align}
& {{z}^{2}}-\left( -1 \right)z+\dfrac{{{z}^{3}}{{\left( {{z}^{n}}-1 \right)}^{2}}}{{{\left( {{z}^{2}}-1 \right)}^{2}}}=0 \\
& \Rightarrow {{z}^{2}}+z+\dfrac{{{z}^{3}}{{\left( {{z}^{n}}-1 \right)}^{2}}}{{{\left( {{z}^{2}}-1 \right)}^{2}}}=0 \\
\end{align}\]
Note:
We note that we can represent any complex number in the polar form in the complex plane as $ r{{e}^{i\theta }}=r\cos \theta +ir\sin \theta $ where $ r $ is the polar distance and $ \theta $ is the polar angle. We can alternatively find $ \alpha +\beta =-1 $ using the fact that the sum of $ {{\left( 2n+1 \right)}^{\text{th}}} $ roots of unity is zero. We note that the roots of unity are always in geometric progression.
Complete step by step answer:
We are given the complex number in polar form as
\[z=\cos \left( \dfrac{2\pi }{2n+1} \right)+i\sin \left( \dfrac{2\pi }{2n+1} \right)\]
We use the identity $ {{\left( \cos \theta +i\sin \theta \right)}^{m}}=\cos m\theta +i\sin m\theta $ where $ m $ is an integer for $ \theta =\dfrac{2\pi }{2n+1} $ and $ n=2n+1 $ to have;
\[\begin{align}
& {{z}^{2n+1}}={{\left( \cos \left( \dfrac{2\pi }{2n+1} \right)+i\sin \left( \dfrac{2\pi }{2n+1} \right) \right)}^{2n+1}} \\
& \Rightarrow {{z}^{2n+1}}=\cos \left( \dfrac{2\pi }{2n+1}\times 2n+1 \right)+i\sin \left( \dfrac{2\pi }{2n+1}\times 2n+1 \right) \\
& \Rightarrow {{z}^{2n+1}}=\cos 2\pi +i\sin 2\pi =1+i\cdot 0=1 \\
\end{align}\]
We know from quadratic equations that if we are given two roots $ \alpha ,\beta $ then we can make a quadratic equation in variable $ x $ as $ {{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0 $ . So the required equation will be a complex quadratic equation of the form
\[{{z}^{2}}-\left( \alpha +\beta \right)z+\alpha \beta =0\]
We are given the expression for the roots $ \alpha =z+{{z}^{3}}+...+{{z}^{2n-1}} $ and $ \beta ={{z}^{2}}+{{z}^{4}}+...+{{z}^{2n}} $ . Let us find the sum of the roots as
\[\begin{align}
& \alpha +\beta =z+{{z}^{3}}+...+{{z}^{2n-1}}+{{z}^{2}}+{{z}^{4}}+...+{{z}^{2n}} \\
& \Rightarrow \alpha +\beta =z+{{z}^{2}}+{{z}^{3}}...+{{z}^{2n-1}}+{{z}^{2n}} \\
\end{align}\]
We add and subtract 1 in the right hand side of to have
\[\Rightarrow \alpha +\beta =1+z+{{z}^{2}}+{{z}^{3}}...+{{z}^{2n-1}}+{{z}^{2n}}-1\]
We use the sum of $ n $ terms of a GP formula for sum up to $ {{\left( 2n+1 \right)}^{th}} $ terms with first $ a=1 $ , common ratio of $ r=z $ in the right hand side to have;
\[\Rightarrow \alpha +\beta =\dfrac{1\cdot \left( {{z}^{2n+1}}-1 \right)}{z-1}-1\]
We put previously obtained $ {{z}^{2n+1}}=1 $ to have
\[\begin{align}
& \Rightarrow \alpha +\beta =\dfrac{1\cdot \left( 1-1 \right)}{z-1}-1 \\
& \Rightarrow \alpha +\beta =0-1=-1 \\
\end{align}\]
We express given $ \alpha =z+{{z}^{3}}+...+{{z}^{2n-1}} $ as the sum up to $ {{n}^{\text{th}}} $ term of a GP with first term $ a=z $ , common difference $ r={{z}^{2}} $ to have;
\[\alpha =\dfrac{z\left( {{z}^{n}}-1 \right)}{{{z}^{2}}-1}\]
We similarly express given $ \beta ={{z}^{2}}+{{z}^{4}}+...+{{z}^{2n}} $ as the sum up to $ {{n}^{\text{th}}} $ term of a GP with first term $ a={{z}^{2}} $ , common difference $ r={{z}^{2}} $ to have;
\[\alpha =\dfrac{{{z}^{3}}\left( {{z}^{n}}-1 \right)}{{{z}^{2}}-1}\]
So the product of the roots is
\[\begin{align}
& \alpha \beta =\dfrac{z\left( {{z}^{n}}-1 \right)}{{{z}^{2}}-1}\cdot \dfrac{{{z}^{2}}\left( {{z}^{n}}-1 \right)}{{{z}^{2}}-1} \\
& \Rightarrow \alpha \beta =\dfrac{{{z}^{3}}{{\left( {{z}^{n}}-1 \right)}^{2}}}{{{\left( {{z}^{2}}-1 \right)}^{2}}} \\
\end{align}\]
So the required complex equation is
\[\begin{align}
& {{z}^{2}}-\left( -1 \right)z+\dfrac{{{z}^{3}}{{\left( {{z}^{n}}-1 \right)}^{2}}}{{{\left( {{z}^{2}}-1 \right)}^{2}}}=0 \\
& \Rightarrow {{z}^{2}}+z+\dfrac{{{z}^{3}}{{\left( {{z}^{n}}-1 \right)}^{2}}}{{{\left( {{z}^{2}}-1 \right)}^{2}}}=0 \\
\end{align}\]
Note:
We note that we can represent any complex number in the polar form in the complex plane as $ r{{e}^{i\theta }}=r\cos \theta +ir\sin \theta $ where $ r $ is the polar distance and $ \theta $ is the polar angle. We can alternatively find $ \alpha +\beta =-1 $ using the fact that the sum of $ {{\left( 2n+1 \right)}^{\text{th}}} $ roots of unity is zero. We note that the roots of unity are always in geometric progression.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

