
Given $ z=\cos \left( \dfrac{2\pi }{2n+1} \right)+i\sin \left( \dfrac{2\pi }{2n+1} \right) $ where $ n $ a positive integer is find the equation whose roots are $ \alpha =z+{{z}^{3}}+...+{{z}^{2n-1}} $ and $ \beta ={{z}^{2}}+{{z}^{4}}+...+{{z}^{2n}} $ .
Answer
552.6k+ views
Hint: We use the identity $ {{\left( \cos \theta +i\sin \theta \right)}^{m}}=\cos m\theta +i\sin m\theta $ to find $ {{z}^{2n+1}} $ . We find $ \alpha +\beta $ using obtained $ {{z}^{2n+1}} $ and sum of $ n $ sum of $ n $ terms of a geometric progression(GP). We use sum of $ n $ terms of a GP with first term $ a $ and common ratio $ r $ as $ \dfrac{a\left( {{r}^{n}}-1 \right)}{r-1} $ to find $ \alpha \beta $ and then find the equation as $ {{z}^{2}}+\left( \alpha +\beta \right)z+\alpha \beta $ .
Complete step by step answer:
We are given the complex number in polar form as
\[z=\cos \left( \dfrac{2\pi }{2n+1} \right)+i\sin \left( \dfrac{2\pi }{2n+1} \right)\]
We use the identity $ {{\left( \cos \theta +i\sin \theta \right)}^{m}}=\cos m\theta +i\sin m\theta $ where $ m $ is an integer for $ \theta =\dfrac{2\pi }{2n+1} $ and $ n=2n+1 $ to have;
\[\begin{align}
& {{z}^{2n+1}}={{\left( \cos \left( \dfrac{2\pi }{2n+1} \right)+i\sin \left( \dfrac{2\pi }{2n+1} \right) \right)}^{2n+1}} \\
& \Rightarrow {{z}^{2n+1}}=\cos \left( \dfrac{2\pi }{2n+1}\times 2n+1 \right)+i\sin \left( \dfrac{2\pi }{2n+1}\times 2n+1 \right) \\
& \Rightarrow {{z}^{2n+1}}=\cos 2\pi +i\sin 2\pi =1+i\cdot 0=1 \\
\end{align}\]
We know from quadratic equations that if we are given two roots $ \alpha ,\beta $ then we can make a quadratic equation in variable $ x $ as $ {{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0 $ . So the required equation will be a complex quadratic equation of the form
\[{{z}^{2}}-\left( \alpha +\beta \right)z+\alpha \beta =0\]
We are given the expression for the roots $ \alpha =z+{{z}^{3}}+...+{{z}^{2n-1}} $ and $ \beta ={{z}^{2}}+{{z}^{4}}+...+{{z}^{2n}} $ . Let us find the sum of the roots as
\[\begin{align}
& \alpha +\beta =z+{{z}^{3}}+...+{{z}^{2n-1}}+{{z}^{2}}+{{z}^{4}}+...+{{z}^{2n}} \\
& \Rightarrow \alpha +\beta =z+{{z}^{2}}+{{z}^{3}}...+{{z}^{2n-1}}+{{z}^{2n}} \\
\end{align}\]
We add and subtract 1 in the right hand side of to have
\[\Rightarrow \alpha +\beta =1+z+{{z}^{2}}+{{z}^{3}}...+{{z}^{2n-1}}+{{z}^{2n}}-1\]
We use the sum of $ n $ terms of a GP formula for sum up to $ {{\left( 2n+1 \right)}^{th}} $ terms with first $ a=1 $ , common ratio of $ r=z $ in the right hand side to have;
\[\Rightarrow \alpha +\beta =\dfrac{1\cdot \left( {{z}^{2n+1}}-1 \right)}{z-1}-1\]
We put previously obtained $ {{z}^{2n+1}}=1 $ to have
\[\begin{align}
& \Rightarrow \alpha +\beta =\dfrac{1\cdot \left( 1-1 \right)}{z-1}-1 \\
& \Rightarrow \alpha +\beta =0-1=-1 \\
\end{align}\]
We express given $ \alpha =z+{{z}^{3}}+...+{{z}^{2n-1}} $ as the sum up to $ {{n}^{\text{th}}} $ term of a GP with first term $ a=z $ , common difference $ r={{z}^{2}} $ to have;
\[\alpha =\dfrac{z\left( {{z}^{n}}-1 \right)}{{{z}^{2}}-1}\]
We similarly express given $ \beta ={{z}^{2}}+{{z}^{4}}+...+{{z}^{2n}} $ as the sum up to $ {{n}^{\text{th}}} $ term of a GP with first term $ a={{z}^{2}} $ , common difference $ r={{z}^{2}} $ to have;
\[\alpha =\dfrac{{{z}^{3}}\left( {{z}^{n}}-1 \right)}{{{z}^{2}}-1}\]
So the product of the roots is
\[\begin{align}
& \alpha \beta =\dfrac{z\left( {{z}^{n}}-1 \right)}{{{z}^{2}}-1}\cdot \dfrac{{{z}^{2}}\left( {{z}^{n}}-1 \right)}{{{z}^{2}}-1} \\
& \Rightarrow \alpha \beta =\dfrac{{{z}^{3}}{{\left( {{z}^{n}}-1 \right)}^{2}}}{{{\left( {{z}^{2}}-1 \right)}^{2}}} \\
\end{align}\]
So the required complex equation is
\[\begin{align}
& {{z}^{2}}-\left( -1 \right)z+\dfrac{{{z}^{3}}{{\left( {{z}^{n}}-1 \right)}^{2}}}{{{\left( {{z}^{2}}-1 \right)}^{2}}}=0 \\
& \Rightarrow {{z}^{2}}+z+\dfrac{{{z}^{3}}{{\left( {{z}^{n}}-1 \right)}^{2}}}{{{\left( {{z}^{2}}-1 \right)}^{2}}}=0 \\
\end{align}\]
Note:
We note that we can represent any complex number in the polar form in the complex plane as $ r{{e}^{i\theta }}=r\cos \theta +ir\sin \theta $ where $ r $ is the polar distance and $ \theta $ is the polar angle. We can alternatively find $ \alpha +\beta =-1 $ using the fact that the sum of $ {{\left( 2n+1 \right)}^{\text{th}}} $ roots of unity is zero. We note that the roots of unity are always in geometric progression.
Complete step by step answer:
We are given the complex number in polar form as
\[z=\cos \left( \dfrac{2\pi }{2n+1} \right)+i\sin \left( \dfrac{2\pi }{2n+1} \right)\]
We use the identity $ {{\left( \cos \theta +i\sin \theta \right)}^{m}}=\cos m\theta +i\sin m\theta $ where $ m $ is an integer for $ \theta =\dfrac{2\pi }{2n+1} $ and $ n=2n+1 $ to have;
\[\begin{align}
& {{z}^{2n+1}}={{\left( \cos \left( \dfrac{2\pi }{2n+1} \right)+i\sin \left( \dfrac{2\pi }{2n+1} \right) \right)}^{2n+1}} \\
& \Rightarrow {{z}^{2n+1}}=\cos \left( \dfrac{2\pi }{2n+1}\times 2n+1 \right)+i\sin \left( \dfrac{2\pi }{2n+1}\times 2n+1 \right) \\
& \Rightarrow {{z}^{2n+1}}=\cos 2\pi +i\sin 2\pi =1+i\cdot 0=1 \\
\end{align}\]
We know from quadratic equations that if we are given two roots $ \alpha ,\beta $ then we can make a quadratic equation in variable $ x $ as $ {{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0 $ . So the required equation will be a complex quadratic equation of the form
\[{{z}^{2}}-\left( \alpha +\beta \right)z+\alpha \beta =0\]
We are given the expression for the roots $ \alpha =z+{{z}^{3}}+...+{{z}^{2n-1}} $ and $ \beta ={{z}^{2}}+{{z}^{4}}+...+{{z}^{2n}} $ . Let us find the sum of the roots as
\[\begin{align}
& \alpha +\beta =z+{{z}^{3}}+...+{{z}^{2n-1}}+{{z}^{2}}+{{z}^{4}}+...+{{z}^{2n}} \\
& \Rightarrow \alpha +\beta =z+{{z}^{2}}+{{z}^{3}}...+{{z}^{2n-1}}+{{z}^{2n}} \\
\end{align}\]
We add and subtract 1 in the right hand side of to have
\[\Rightarrow \alpha +\beta =1+z+{{z}^{2}}+{{z}^{3}}...+{{z}^{2n-1}}+{{z}^{2n}}-1\]
We use the sum of $ n $ terms of a GP formula for sum up to $ {{\left( 2n+1 \right)}^{th}} $ terms with first $ a=1 $ , common ratio of $ r=z $ in the right hand side to have;
\[\Rightarrow \alpha +\beta =\dfrac{1\cdot \left( {{z}^{2n+1}}-1 \right)}{z-1}-1\]
We put previously obtained $ {{z}^{2n+1}}=1 $ to have
\[\begin{align}
& \Rightarrow \alpha +\beta =\dfrac{1\cdot \left( 1-1 \right)}{z-1}-1 \\
& \Rightarrow \alpha +\beta =0-1=-1 \\
\end{align}\]
We express given $ \alpha =z+{{z}^{3}}+...+{{z}^{2n-1}} $ as the sum up to $ {{n}^{\text{th}}} $ term of a GP with first term $ a=z $ , common difference $ r={{z}^{2}} $ to have;
\[\alpha =\dfrac{z\left( {{z}^{n}}-1 \right)}{{{z}^{2}}-1}\]
We similarly express given $ \beta ={{z}^{2}}+{{z}^{4}}+...+{{z}^{2n}} $ as the sum up to $ {{n}^{\text{th}}} $ term of a GP with first term $ a={{z}^{2}} $ , common difference $ r={{z}^{2}} $ to have;
\[\alpha =\dfrac{{{z}^{3}}\left( {{z}^{n}}-1 \right)}{{{z}^{2}}-1}\]
So the product of the roots is
\[\begin{align}
& \alpha \beta =\dfrac{z\left( {{z}^{n}}-1 \right)}{{{z}^{2}}-1}\cdot \dfrac{{{z}^{2}}\left( {{z}^{n}}-1 \right)}{{{z}^{2}}-1} \\
& \Rightarrow \alpha \beta =\dfrac{{{z}^{3}}{{\left( {{z}^{n}}-1 \right)}^{2}}}{{{\left( {{z}^{2}}-1 \right)}^{2}}} \\
\end{align}\]
So the required complex equation is
\[\begin{align}
& {{z}^{2}}-\left( -1 \right)z+\dfrac{{{z}^{3}}{{\left( {{z}^{n}}-1 \right)}^{2}}}{{{\left( {{z}^{2}}-1 \right)}^{2}}}=0 \\
& \Rightarrow {{z}^{2}}+z+\dfrac{{{z}^{3}}{{\left( {{z}^{n}}-1 \right)}^{2}}}{{{\left( {{z}^{2}}-1 \right)}^{2}}}=0 \\
\end{align}\]
Note:
We note that we can represent any complex number in the polar form in the complex plane as $ r{{e}^{i\theta }}=r\cos \theta +ir\sin \theta $ where $ r $ is the polar distance and $ \theta $ is the polar angle. We can alternatively find $ \alpha +\beta =-1 $ using the fact that the sum of $ {{\left( 2n+1 \right)}^{\text{th}}} $ roots of unity is zero. We note that the roots of unity are always in geometric progression.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

