
Given the vectors $\overrightarrow{A}=3\widehat{i}+4\widehat{j}$ and $\overrightarrow{B}=\widehat{i}+\widehat{j}$. $\theta $ is the angle between $\overrightarrow{A}$ and $\overrightarrow{B}$. Which of the following statements is/are correct?
A. $\left| \overrightarrow{A} \right|\cos \theta \left( \dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}} \right)$ is the component of $\overrightarrow{A}$ along $\overrightarrow{B}$
B. $\left| \overrightarrow{A} \right|\cos \theta \left( \dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}} \right)$ is the component of $\overrightarrow{A}$ perpendicular to $\overrightarrow{B}$
C. $\left| \overrightarrow{A} \right|\cos \theta \left( \dfrac{\widehat{i}-\widehat{j}}{\sqrt{2}} \right)$ is the component of $\overrightarrow{A}$ along $\overrightarrow{B}$
D. All of the above.
Answer
512.1k+ views
Hint: The component of a vector along another vector is the projection of the first vector on the second vector. To find the projection we use the scalar product of the two vectors.
Complete step by step solution:
Given vectors are,
$\begin{align}
& \overrightarrow{A}=3\widehat{i}+4\widehat{j} \\
& \overrightarrow{B}=\widehat{i}+\widehat{j} \\
\end{align}$
$\theta $is the angle between the two vectors.
To find the angle between the two vectors we use scalar product formula,
$\overrightarrow{A}\centerdot \overrightarrow{B}=\left| \overrightarrow{A} \right|\left| \overrightarrow{B}\cos \theta \right|$
Where,
$\left| \overrightarrow{A} \right|=$ is the magnitude of vector$A$$=\sqrt{\left( {{3}^{2}} \right)+\left( {{4}^{2}} \right)}=\sqrt{9+16}=\sqrt{25}=5units$
$\left| \overrightarrow{B} \right|=$is the magnitude of vector$B$$=\sqrt{\left( {{1}^{2}} \right)+\left( {{1}^{2}} \right)}=\sqrt{1+1}=\sqrt{2}units$
Then,
$\begin{align}
& \left( 3\widehat{i}+4\widehat{j} \right)\centerdot \left( \widehat{i}+\widehat{j} \right)=\left( 5 \right)\left( \sqrt{2} \right)\cos \theta \\
& \Rightarrow \left( 3\times 1 \right)+\left( 4\times 1 \right)=\left( 5 \right)\left( \sqrt{2} \right)\cos \theta \\
& \Rightarrow 7=5\sqrt{2}\cos \theta \\
& \cos \theta =\dfrac{7}{5\sqrt{2}}
\end{align}$
The component of $\overrightarrow{A}$along$\overrightarrow{B}$$=\left| \overrightarrow{A} \right|\cos \theta \widehat{B}$
Where,
$\widehat{B}$is the directional unit vector along vector B
$\widehat{B}=\dfrac{\overrightarrow{\left| B \right|}}{\left| \overrightarrow{\left| B \right|} \right|}=\dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}}$
Hence, the component of $\overrightarrow{A}$along$\overrightarrow{B}$is$\left| \overrightarrow{A} \right|\cos \theta \left( \dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}} \right)$
The component of $\overrightarrow{A}$perpendicular to $\overrightarrow{B}$is$\left| \overrightarrow{A} \right|\cos \theta \left( \dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}} \right)$
Therefore, option (A) and (B) are correct.
Note:- The component of the vector along another vector is the horizontal component of the vector taking another vector as the base vector.
- The component of the vector perpendicular to another vector is the horizontal component of the vector taking another vector as the base vector.
Complete step by step solution:
Given vectors are,
$\begin{align}
& \overrightarrow{A}=3\widehat{i}+4\widehat{j} \\
& \overrightarrow{B}=\widehat{i}+\widehat{j} \\
\end{align}$
$\theta $is the angle between the two vectors.
To find the angle between the two vectors we use scalar product formula,
$\overrightarrow{A}\centerdot \overrightarrow{B}=\left| \overrightarrow{A} \right|\left| \overrightarrow{B}\cos \theta \right|$
Where,
$\left| \overrightarrow{A} \right|=$ is the magnitude of vector$A$$=\sqrt{\left( {{3}^{2}} \right)+\left( {{4}^{2}} \right)}=\sqrt{9+16}=\sqrt{25}=5units$
$\left| \overrightarrow{B} \right|=$is the magnitude of vector$B$$=\sqrt{\left( {{1}^{2}} \right)+\left( {{1}^{2}} \right)}=\sqrt{1+1}=\sqrt{2}units$
Then,
$\begin{align}
& \left( 3\widehat{i}+4\widehat{j} \right)\centerdot \left( \widehat{i}+\widehat{j} \right)=\left( 5 \right)\left( \sqrt{2} \right)\cos \theta \\
& \Rightarrow \left( 3\times 1 \right)+\left( 4\times 1 \right)=\left( 5 \right)\left( \sqrt{2} \right)\cos \theta \\
& \Rightarrow 7=5\sqrt{2}\cos \theta \\
& \cos \theta =\dfrac{7}{5\sqrt{2}}
\end{align}$
The component of $\overrightarrow{A}$along$\overrightarrow{B}$$=\left| \overrightarrow{A} \right|\cos \theta \widehat{B}$
Where,
$\widehat{B}$is the directional unit vector along vector B
$\widehat{B}=\dfrac{\overrightarrow{\left| B \right|}}{\left| \overrightarrow{\left| B \right|} \right|}=\dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}}$
Hence, the component of $\overrightarrow{A}$along$\overrightarrow{B}$is$\left| \overrightarrow{A} \right|\cos \theta \left( \dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}} \right)$
The component of $\overrightarrow{A}$perpendicular to $\overrightarrow{B}$is$\left| \overrightarrow{A} \right|\cos \theta \left( \dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}} \right)$
Therefore, option (A) and (B) are correct.
Note:- The component of the vector along another vector is the horizontal component of the vector taking another vector as the base vector.
- The component of the vector perpendicular to another vector is the horizontal component of the vector taking another vector as the base vector.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
