
Given the vectors $\overrightarrow{A}=3\widehat{i}+4\widehat{j}$ and $\overrightarrow{B}=\widehat{i}+\widehat{j}$. $\theta $ is the angle between $\overrightarrow{A}$ and $\overrightarrow{B}$. Which of the following statements is/are correct?
A. $\left| \overrightarrow{A} \right|\cos \theta \left( \dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}} \right)$ is the component of $\overrightarrow{A}$ along $\overrightarrow{B}$
B. $\left| \overrightarrow{A} \right|\cos \theta \left( \dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}} \right)$ is the component of $\overrightarrow{A}$ perpendicular to $\overrightarrow{B}$
C. $\left| \overrightarrow{A} \right|\cos \theta \left( \dfrac{\widehat{i}-\widehat{j}}{\sqrt{2}} \right)$ is the component of $\overrightarrow{A}$ along $\overrightarrow{B}$
D. All of the above.
Answer
576.6k+ views
Hint: The component of a vector along another vector is the projection of the first vector on the second vector. To find the projection we use the scalar product of the two vectors.
Complete step by step solution:
Given vectors are,
$\begin{align}
& \overrightarrow{A}=3\widehat{i}+4\widehat{j} \\
& \overrightarrow{B}=\widehat{i}+\widehat{j} \\
\end{align}$
$\theta $is the angle between the two vectors.
To find the angle between the two vectors we use scalar product formula,
$\overrightarrow{A}\centerdot \overrightarrow{B}=\left| \overrightarrow{A} \right|\left| \overrightarrow{B}\cos \theta \right|$
Where,
$\left| \overrightarrow{A} \right|=$ is the magnitude of vector$A$$=\sqrt{\left( {{3}^{2}} \right)+\left( {{4}^{2}} \right)}=\sqrt{9+16}=\sqrt{25}=5units$
$\left| \overrightarrow{B} \right|=$is the magnitude of vector$B$$=\sqrt{\left( {{1}^{2}} \right)+\left( {{1}^{2}} \right)}=\sqrt{1+1}=\sqrt{2}units$
Then,
$\begin{align}
& \left( 3\widehat{i}+4\widehat{j} \right)\centerdot \left( \widehat{i}+\widehat{j} \right)=\left( 5 \right)\left( \sqrt{2} \right)\cos \theta \\
& \Rightarrow \left( 3\times 1 \right)+\left( 4\times 1 \right)=\left( 5 \right)\left( \sqrt{2} \right)\cos \theta \\
& \Rightarrow 7=5\sqrt{2}\cos \theta \\
& \cos \theta =\dfrac{7}{5\sqrt{2}}
\end{align}$
The component of $\overrightarrow{A}$along$\overrightarrow{B}$$=\left| \overrightarrow{A} \right|\cos \theta \widehat{B}$
Where,
$\widehat{B}$is the directional unit vector along vector B
$\widehat{B}=\dfrac{\overrightarrow{\left| B \right|}}{\left| \overrightarrow{\left| B \right|} \right|}=\dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}}$
Hence, the component of $\overrightarrow{A}$along$\overrightarrow{B}$is$\left| \overrightarrow{A} \right|\cos \theta \left( \dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}} \right)$
The component of $\overrightarrow{A}$perpendicular to $\overrightarrow{B}$is$\left| \overrightarrow{A} \right|\cos \theta \left( \dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}} \right)$
Therefore, option (A) and (B) are correct.
Note:- The component of the vector along another vector is the horizontal component of the vector taking another vector as the base vector.
- The component of the vector perpendicular to another vector is the horizontal component of the vector taking another vector as the base vector.
Complete step by step solution:
Given vectors are,
$\begin{align}
& \overrightarrow{A}=3\widehat{i}+4\widehat{j} \\
& \overrightarrow{B}=\widehat{i}+\widehat{j} \\
\end{align}$
$\theta $is the angle between the two vectors.
To find the angle between the two vectors we use scalar product formula,
$\overrightarrow{A}\centerdot \overrightarrow{B}=\left| \overrightarrow{A} \right|\left| \overrightarrow{B}\cos \theta \right|$
Where,
$\left| \overrightarrow{A} \right|=$ is the magnitude of vector$A$$=\sqrt{\left( {{3}^{2}} \right)+\left( {{4}^{2}} \right)}=\sqrt{9+16}=\sqrt{25}=5units$
$\left| \overrightarrow{B} \right|=$is the magnitude of vector$B$$=\sqrt{\left( {{1}^{2}} \right)+\left( {{1}^{2}} \right)}=\sqrt{1+1}=\sqrt{2}units$
Then,
$\begin{align}
& \left( 3\widehat{i}+4\widehat{j} \right)\centerdot \left( \widehat{i}+\widehat{j} \right)=\left( 5 \right)\left( \sqrt{2} \right)\cos \theta \\
& \Rightarrow \left( 3\times 1 \right)+\left( 4\times 1 \right)=\left( 5 \right)\left( \sqrt{2} \right)\cos \theta \\
& \Rightarrow 7=5\sqrt{2}\cos \theta \\
& \cos \theta =\dfrac{7}{5\sqrt{2}}
\end{align}$
The component of $\overrightarrow{A}$along$\overrightarrow{B}$$=\left| \overrightarrow{A} \right|\cos \theta \widehat{B}$
Where,
$\widehat{B}$is the directional unit vector along vector B
$\widehat{B}=\dfrac{\overrightarrow{\left| B \right|}}{\left| \overrightarrow{\left| B \right|} \right|}=\dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}}$
Hence, the component of $\overrightarrow{A}$along$\overrightarrow{B}$is$\left| \overrightarrow{A} \right|\cos \theta \left( \dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}} \right)$
The component of $\overrightarrow{A}$perpendicular to $\overrightarrow{B}$is$\left| \overrightarrow{A} \right|\cos \theta \left( \dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}} \right)$
Therefore, option (A) and (B) are correct.
Note:- The component of the vector along another vector is the horizontal component of the vector taking another vector as the base vector.
- The component of the vector perpendicular to another vector is the horizontal component of the vector taking another vector as the base vector.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

