
Given that,
x 10 15 20 f(x) 14 18 28
The estimated value of f(12) is
(a) 15.520
(b) 14.88
(c) 15.37
(d) 14.78
| x | 10 | 15 | 20 |
| f(x) | 14 | 18 | 28 |
Answer
563.7k+ views
Hint: To solve the given question, we will first find out the function f(x). We will assume that the function f(x) is of the form \[{{a}_{1}}{{x}^{n}}+{{a}_{2}}{{x}^{n-1}}+{{a}_{3}}{{x}^{n-2}}+.....+{{a}_{n}}x+{{a}_{n+1}}.\] Now, as there are only three pairs of x and f(x) are given, we will assume the value of n such that we are able to find all the variables \[\left( {{a}_{1}},{{a}_{2}}......{{a}_{n}} \right).\] Now, after finding the values of all the variables, we will put them in f(x). After doing this, we will put x = 12 in f(x) and we will find its value.
Complete step-by-step answer:
To start with, we will assume that the function f(x) is a polynomial of n order i.e. \[f\left( x \right)={{a}_{1}}{{x}^{n}}+{{a}_{2}}{{x}^{n-1}}+{{a}_{3}}{{x}^{n-2}}+.....+{{a}_{n}}x+{{a}_{n+1}}.\] Now, we have to find this function f(x) and three pairs of x and f(x) are given in the question. So, we will have to take the value of n such that we are able to find the values of all the variables \[\left( {{a}_{1}},{{a}_{2}}......{{a}_{n}} \right).\] Thus, we will choose n = 2 as we have three unknown variables \[{{a}_{1}},{{a}_{2}},{{a}_{3}}.\] So, after putting n = 2 in f(x), we get the following equation.
\[f\left( x \right)={{a}_{1}}{{x}^{2}}+{{a}_{2}}x+{{a}_{3}}......\left( i \right)\]
Now, we have to find the values of \[{{a}_{1}},{{a}_{2}},{{a}_{3}}.\] For this, we are given three pairs of x and f(x). So, when we put x = 10, we get f(x) = 14. Thus, we will get the following equation
\[f\left( 10 \right)={{a}_{1}}{{\left( 10 \right)}^{2}}+{{a}_{2}}\left( 10 \right)+{{a}_{3}}\]
\[\Rightarrow 14=100{{a}_{1}}+10{{a}_{2}}+{{a}_{3}}\]
\[\Rightarrow 100{{a}_{1}}+10{{a}_{2}}+{{a}_{3}}=14.......\left( ii \right)\]
Now, it is given that when we put x = 15, we get f(x) = 18. Thus, we will get the following equation
\[f\left( 15 \right)={{a}_{1}}{{\left( 15 \right)}^{2}}+{{a}_{2}}\left( 15 \right)+{{a}_{3}}\]
\[\Rightarrow 18=225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}}\]
\[\Rightarrow 225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}}=18......\left( iii \right)\]
Now, it is given that when we put x = 20, we get f(x) = 28. Thus, we will get the following equation
\[f\left( 20 \right)={{a}_{1}}{{\left( 20 \right)}^{2}}+{{a}_{2}}\left( 20 \right)+{{a}_{3}}\]
\[\Rightarrow 28=400{{a}_{1}}+20{{a}_{2}}+{{a}_{3}}\]
\[\Rightarrow 400{{a}_{1}}+20{{a}_{2}}+{{a}_{3}}=28.......\left( iv \right)\]
Now, we will subtract (ii) from (iii). Thus, we will get the following equation.
\[\Rightarrow \left( 225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}} \right)-\left( 100{{a}_{1}}+10{{a}_{2}}+{{a}_{3}} \right)=18-14\]
\[\Rightarrow 225{{a}_{1}}-100{{a}_{1}}+15{{a}_{2}}-10{{a}_{2}}+{{a}_{3}}-{{a}_{3}}=4\]
\[\Rightarrow 125{{a}_{1}}+5{{a}_{2}}=4......\left( v \right)\]
Now, we will subtract (iii) from (iv). Thus, we will get the following equation
\[\Rightarrow \left( 400{{a}_{1}}+20{{a}_{2}}+{{a}_{3}} \right)-\left( 225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}} \right)=28-18\]
\[\Rightarrow 400{{a}_{1}}-225{{a}_{1}}+20{{a}_{2}}-15{{a}_{2}}+{{a}_{3}}-{{a}_{3}}=10\]
\[\Rightarrow 175{{a}_{1}}+5{{a}_{2}}=10......\left( vi \right)\]
Now, we will subtract (v) from (vi). Thus, we will get the following equation.
\[\Rightarrow \left( 175{{a}_{1}}+5{{a}_{2}} \right)-\left( 125{{a}_{1}}+5{{a}_{2}} \right)=10-4\]
\[\Rightarrow 175{{a}_{1}}-125{{a}_{1}}+5{{a}_{2}}-5{{a}_{2}}=6\]
\[\Rightarrow 50{{a}_{1}}=6\]
\[\Rightarrow {{a}_{1}}=\dfrac{6}{50}\]
\[\Rightarrow {{a}_{1}}=\dfrac{3}{25}......\left( vii \right)\]
Now, we will put the value \[{{a}_{1}}\] from (vii) to (v). Thus, we will get the following equation.
\[\Rightarrow 125\left( \dfrac{3}{25} \right)+5{{a}_{2}}=4\]
\[\Rightarrow 15+5{{a}_{2}}=4\]
\[\Rightarrow 5{{a}_{2}}=4-15\]
\[\Rightarrow 5{{a}_{2}}=-11\]
\[\Rightarrow {{a}_{2}}=\dfrac{-11}{5}....\left( viii \right)\]
Now, we will put the values of \[{{a}_{1}}\] and \[{{a}_{2}}\] from (vii) and (viii) to (ii). Thus, we will get the following equation.
\[\Rightarrow 100\left( \dfrac{3}{25} \right)+10\left( \dfrac{-11}{5} \right)+{{a}_{3}}=14\]
\[\Rightarrow 12-22+{{a}_{3}}=14\]
\[\Rightarrow -10+{{a}_{3}}=14\]
\[\Rightarrow {{a}_{3}}=24......\left( ix \right)\]
Now, we will put the values of \[{{a}_{1}},{{a}_{2}},{{a}_{3}}\] from (vii), (viii) and (ix) into (i). Thus, we will get,
\[f\left( x \right)=\dfrac{3}{25}{{x}^{2}}-\dfrac{11}{5}x+24\]
Now, we have to find the value of f(12). For this, we will simply put x = 12. Thus, we will get,
\[f\left( 12 \right)=\dfrac{3}{25}{{\left( 12 \right)}^{2}}-\dfrac{11}{5}\left( 12 \right)+24\]
\[\Rightarrow f\left( 12 \right)=\dfrac{3}{25}\left( 144 \right)-\dfrac{11\times 12}{5}+24\]
\[\Rightarrow f\left( 12 \right)=\dfrac{432}{25}-\dfrac{132}{5}+24\]
\[\Rightarrow f\left( 12 \right)=17.28-26.5+24\]
\[\Rightarrow f\left( 12 \right)=14.88\]
Hence, option (b) is the right answer.
So, the correct answer is “Option (b)”.
Note: While solving the question, we have assumed that f(x) is a quadratic polynomial. There may be chances that f(x) is a polynomial of a higher order. Also, it may be possible that f(x) is not even a polynomial, it is some other function. That’s why the value of f(12) obtained is not exact, it is estimated on the basis that f(x) is a quadratic polynomial.
Complete step-by-step answer:
To start with, we will assume that the function f(x) is a polynomial of n order i.e. \[f\left( x \right)={{a}_{1}}{{x}^{n}}+{{a}_{2}}{{x}^{n-1}}+{{a}_{3}}{{x}^{n-2}}+.....+{{a}_{n}}x+{{a}_{n+1}}.\] Now, we have to find this function f(x) and three pairs of x and f(x) are given in the question. So, we will have to take the value of n such that we are able to find the values of all the variables \[\left( {{a}_{1}},{{a}_{2}}......{{a}_{n}} \right).\] Thus, we will choose n = 2 as we have three unknown variables \[{{a}_{1}},{{a}_{2}},{{a}_{3}}.\] So, after putting n = 2 in f(x), we get the following equation.
\[f\left( x \right)={{a}_{1}}{{x}^{2}}+{{a}_{2}}x+{{a}_{3}}......\left( i \right)\]
Now, we have to find the values of \[{{a}_{1}},{{a}_{2}},{{a}_{3}}.\] For this, we are given three pairs of x and f(x). So, when we put x = 10, we get f(x) = 14. Thus, we will get the following equation
\[f\left( 10 \right)={{a}_{1}}{{\left( 10 \right)}^{2}}+{{a}_{2}}\left( 10 \right)+{{a}_{3}}\]
\[\Rightarrow 14=100{{a}_{1}}+10{{a}_{2}}+{{a}_{3}}\]
\[\Rightarrow 100{{a}_{1}}+10{{a}_{2}}+{{a}_{3}}=14.......\left( ii \right)\]
Now, it is given that when we put x = 15, we get f(x) = 18. Thus, we will get the following equation
\[f\left( 15 \right)={{a}_{1}}{{\left( 15 \right)}^{2}}+{{a}_{2}}\left( 15 \right)+{{a}_{3}}\]
\[\Rightarrow 18=225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}}\]
\[\Rightarrow 225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}}=18......\left( iii \right)\]
Now, it is given that when we put x = 20, we get f(x) = 28. Thus, we will get the following equation
\[f\left( 20 \right)={{a}_{1}}{{\left( 20 \right)}^{2}}+{{a}_{2}}\left( 20 \right)+{{a}_{3}}\]
\[\Rightarrow 28=400{{a}_{1}}+20{{a}_{2}}+{{a}_{3}}\]
\[\Rightarrow 400{{a}_{1}}+20{{a}_{2}}+{{a}_{3}}=28.......\left( iv \right)\]
Now, we will subtract (ii) from (iii). Thus, we will get the following equation.
\[\Rightarrow \left( 225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}} \right)-\left( 100{{a}_{1}}+10{{a}_{2}}+{{a}_{3}} \right)=18-14\]
\[\Rightarrow 225{{a}_{1}}-100{{a}_{1}}+15{{a}_{2}}-10{{a}_{2}}+{{a}_{3}}-{{a}_{3}}=4\]
\[\Rightarrow 125{{a}_{1}}+5{{a}_{2}}=4......\left( v \right)\]
Now, we will subtract (iii) from (iv). Thus, we will get the following equation
\[\Rightarrow \left( 400{{a}_{1}}+20{{a}_{2}}+{{a}_{3}} \right)-\left( 225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}} \right)=28-18\]
\[\Rightarrow 400{{a}_{1}}-225{{a}_{1}}+20{{a}_{2}}-15{{a}_{2}}+{{a}_{3}}-{{a}_{3}}=10\]
\[\Rightarrow 175{{a}_{1}}+5{{a}_{2}}=10......\left( vi \right)\]
Now, we will subtract (v) from (vi). Thus, we will get the following equation.
\[\Rightarrow \left( 175{{a}_{1}}+5{{a}_{2}} \right)-\left( 125{{a}_{1}}+5{{a}_{2}} \right)=10-4\]
\[\Rightarrow 175{{a}_{1}}-125{{a}_{1}}+5{{a}_{2}}-5{{a}_{2}}=6\]
\[\Rightarrow 50{{a}_{1}}=6\]
\[\Rightarrow {{a}_{1}}=\dfrac{6}{50}\]
\[\Rightarrow {{a}_{1}}=\dfrac{3}{25}......\left( vii \right)\]
Now, we will put the value \[{{a}_{1}}\] from (vii) to (v). Thus, we will get the following equation.
\[\Rightarrow 125\left( \dfrac{3}{25} \right)+5{{a}_{2}}=4\]
\[\Rightarrow 15+5{{a}_{2}}=4\]
\[\Rightarrow 5{{a}_{2}}=4-15\]
\[\Rightarrow 5{{a}_{2}}=-11\]
\[\Rightarrow {{a}_{2}}=\dfrac{-11}{5}....\left( viii \right)\]
Now, we will put the values of \[{{a}_{1}}\] and \[{{a}_{2}}\] from (vii) and (viii) to (ii). Thus, we will get the following equation.
\[\Rightarrow 100\left( \dfrac{3}{25} \right)+10\left( \dfrac{-11}{5} \right)+{{a}_{3}}=14\]
\[\Rightarrow 12-22+{{a}_{3}}=14\]
\[\Rightarrow -10+{{a}_{3}}=14\]
\[\Rightarrow {{a}_{3}}=24......\left( ix \right)\]
Now, we will put the values of \[{{a}_{1}},{{a}_{2}},{{a}_{3}}\] from (vii), (viii) and (ix) into (i). Thus, we will get,
\[f\left( x \right)=\dfrac{3}{25}{{x}^{2}}-\dfrac{11}{5}x+24\]
Now, we have to find the value of f(12). For this, we will simply put x = 12. Thus, we will get,
\[f\left( 12 \right)=\dfrac{3}{25}{{\left( 12 \right)}^{2}}-\dfrac{11}{5}\left( 12 \right)+24\]
\[\Rightarrow f\left( 12 \right)=\dfrac{3}{25}\left( 144 \right)-\dfrac{11\times 12}{5}+24\]
\[\Rightarrow f\left( 12 \right)=\dfrac{432}{25}-\dfrac{132}{5}+24\]
\[\Rightarrow f\left( 12 \right)=17.28-26.5+24\]
\[\Rightarrow f\left( 12 \right)=14.88\]
Hence, option (b) is the right answer.
So, the correct answer is “Option (b)”.
Note: While solving the question, we have assumed that f(x) is a quadratic polynomial. There may be chances that f(x) is a polynomial of a higher order. Also, it may be possible that f(x) is not even a polynomial, it is some other function. That’s why the value of f(12) obtained is not exact, it is estimated on the basis that f(x) is a quadratic polynomial.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

