
Given that,
x 10 15 20 f(x) 14 18 28
The estimated value of f(12) is
(a) 15.520
(b) 14.88
(c) 15.37
(d) 14.78
| x | 10 | 15 | 20 |
| f(x) | 14 | 18 | 28 |
Answer
582.9k+ views
Hint: To solve the given question, we will first find out the function f(x). We will assume that the function f(x) is of the form \[{{a}_{1}}{{x}^{n}}+{{a}_{2}}{{x}^{n-1}}+{{a}_{3}}{{x}^{n-2}}+.....+{{a}_{n}}x+{{a}_{n+1}}.\] Now, as there are only three pairs of x and f(x) are given, we will assume the value of n such that we are able to find all the variables \[\left( {{a}_{1}},{{a}_{2}}......{{a}_{n}} \right).\] Now, after finding the values of all the variables, we will put them in f(x). After doing this, we will put x = 12 in f(x) and we will find its value.
Complete step-by-step answer:
To start with, we will assume that the function f(x) is a polynomial of n order i.e. \[f\left( x \right)={{a}_{1}}{{x}^{n}}+{{a}_{2}}{{x}^{n-1}}+{{a}_{3}}{{x}^{n-2}}+.....+{{a}_{n}}x+{{a}_{n+1}}.\] Now, we have to find this function f(x) and three pairs of x and f(x) are given in the question. So, we will have to take the value of n such that we are able to find the values of all the variables \[\left( {{a}_{1}},{{a}_{2}}......{{a}_{n}} \right).\] Thus, we will choose n = 2 as we have three unknown variables \[{{a}_{1}},{{a}_{2}},{{a}_{3}}.\] So, after putting n = 2 in f(x), we get the following equation.
\[f\left( x \right)={{a}_{1}}{{x}^{2}}+{{a}_{2}}x+{{a}_{3}}......\left( i \right)\]
Now, we have to find the values of \[{{a}_{1}},{{a}_{2}},{{a}_{3}}.\] For this, we are given three pairs of x and f(x). So, when we put x = 10, we get f(x) = 14. Thus, we will get the following equation
\[f\left( 10 \right)={{a}_{1}}{{\left( 10 \right)}^{2}}+{{a}_{2}}\left( 10 \right)+{{a}_{3}}\]
\[\Rightarrow 14=100{{a}_{1}}+10{{a}_{2}}+{{a}_{3}}\]
\[\Rightarrow 100{{a}_{1}}+10{{a}_{2}}+{{a}_{3}}=14.......\left( ii \right)\]
Now, it is given that when we put x = 15, we get f(x) = 18. Thus, we will get the following equation
\[f\left( 15 \right)={{a}_{1}}{{\left( 15 \right)}^{2}}+{{a}_{2}}\left( 15 \right)+{{a}_{3}}\]
\[\Rightarrow 18=225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}}\]
\[\Rightarrow 225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}}=18......\left( iii \right)\]
Now, it is given that when we put x = 20, we get f(x) = 28. Thus, we will get the following equation
\[f\left( 20 \right)={{a}_{1}}{{\left( 20 \right)}^{2}}+{{a}_{2}}\left( 20 \right)+{{a}_{3}}\]
\[\Rightarrow 28=400{{a}_{1}}+20{{a}_{2}}+{{a}_{3}}\]
\[\Rightarrow 400{{a}_{1}}+20{{a}_{2}}+{{a}_{3}}=28.......\left( iv \right)\]
Now, we will subtract (ii) from (iii). Thus, we will get the following equation.
\[\Rightarrow \left( 225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}} \right)-\left( 100{{a}_{1}}+10{{a}_{2}}+{{a}_{3}} \right)=18-14\]
\[\Rightarrow 225{{a}_{1}}-100{{a}_{1}}+15{{a}_{2}}-10{{a}_{2}}+{{a}_{3}}-{{a}_{3}}=4\]
\[\Rightarrow 125{{a}_{1}}+5{{a}_{2}}=4......\left( v \right)\]
Now, we will subtract (iii) from (iv). Thus, we will get the following equation
\[\Rightarrow \left( 400{{a}_{1}}+20{{a}_{2}}+{{a}_{3}} \right)-\left( 225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}} \right)=28-18\]
\[\Rightarrow 400{{a}_{1}}-225{{a}_{1}}+20{{a}_{2}}-15{{a}_{2}}+{{a}_{3}}-{{a}_{3}}=10\]
\[\Rightarrow 175{{a}_{1}}+5{{a}_{2}}=10......\left( vi \right)\]
Now, we will subtract (v) from (vi). Thus, we will get the following equation.
\[\Rightarrow \left( 175{{a}_{1}}+5{{a}_{2}} \right)-\left( 125{{a}_{1}}+5{{a}_{2}} \right)=10-4\]
\[\Rightarrow 175{{a}_{1}}-125{{a}_{1}}+5{{a}_{2}}-5{{a}_{2}}=6\]
\[\Rightarrow 50{{a}_{1}}=6\]
\[\Rightarrow {{a}_{1}}=\dfrac{6}{50}\]
\[\Rightarrow {{a}_{1}}=\dfrac{3}{25}......\left( vii \right)\]
Now, we will put the value \[{{a}_{1}}\] from (vii) to (v). Thus, we will get the following equation.
\[\Rightarrow 125\left( \dfrac{3}{25} \right)+5{{a}_{2}}=4\]
\[\Rightarrow 15+5{{a}_{2}}=4\]
\[\Rightarrow 5{{a}_{2}}=4-15\]
\[\Rightarrow 5{{a}_{2}}=-11\]
\[\Rightarrow {{a}_{2}}=\dfrac{-11}{5}....\left( viii \right)\]
Now, we will put the values of \[{{a}_{1}}\] and \[{{a}_{2}}\] from (vii) and (viii) to (ii). Thus, we will get the following equation.
\[\Rightarrow 100\left( \dfrac{3}{25} \right)+10\left( \dfrac{-11}{5} \right)+{{a}_{3}}=14\]
\[\Rightarrow 12-22+{{a}_{3}}=14\]
\[\Rightarrow -10+{{a}_{3}}=14\]
\[\Rightarrow {{a}_{3}}=24......\left( ix \right)\]
Now, we will put the values of \[{{a}_{1}},{{a}_{2}},{{a}_{3}}\] from (vii), (viii) and (ix) into (i). Thus, we will get,
\[f\left( x \right)=\dfrac{3}{25}{{x}^{2}}-\dfrac{11}{5}x+24\]
Now, we have to find the value of f(12). For this, we will simply put x = 12. Thus, we will get,
\[f\left( 12 \right)=\dfrac{3}{25}{{\left( 12 \right)}^{2}}-\dfrac{11}{5}\left( 12 \right)+24\]
\[\Rightarrow f\left( 12 \right)=\dfrac{3}{25}\left( 144 \right)-\dfrac{11\times 12}{5}+24\]
\[\Rightarrow f\left( 12 \right)=\dfrac{432}{25}-\dfrac{132}{5}+24\]
\[\Rightarrow f\left( 12 \right)=17.28-26.5+24\]
\[\Rightarrow f\left( 12 \right)=14.88\]
Hence, option (b) is the right answer.
So, the correct answer is “Option (b)”.
Note: While solving the question, we have assumed that f(x) is a quadratic polynomial. There may be chances that f(x) is a polynomial of a higher order. Also, it may be possible that f(x) is not even a polynomial, it is some other function. That’s why the value of f(12) obtained is not exact, it is estimated on the basis that f(x) is a quadratic polynomial.
Complete step-by-step answer:
To start with, we will assume that the function f(x) is a polynomial of n order i.e. \[f\left( x \right)={{a}_{1}}{{x}^{n}}+{{a}_{2}}{{x}^{n-1}}+{{a}_{3}}{{x}^{n-2}}+.....+{{a}_{n}}x+{{a}_{n+1}}.\] Now, we have to find this function f(x) and three pairs of x and f(x) are given in the question. So, we will have to take the value of n such that we are able to find the values of all the variables \[\left( {{a}_{1}},{{a}_{2}}......{{a}_{n}} \right).\] Thus, we will choose n = 2 as we have three unknown variables \[{{a}_{1}},{{a}_{2}},{{a}_{3}}.\] So, after putting n = 2 in f(x), we get the following equation.
\[f\left( x \right)={{a}_{1}}{{x}^{2}}+{{a}_{2}}x+{{a}_{3}}......\left( i \right)\]
Now, we have to find the values of \[{{a}_{1}},{{a}_{2}},{{a}_{3}}.\] For this, we are given three pairs of x and f(x). So, when we put x = 10, we get f(x) = 14. Thus, we will get the following equation
\[f\left( 10 \right)={{a}_{1}}{{\left( 10 \right)}^{2}}+{{a}_{2}}\left( 10 \right)+{{a}_{3}}\]
\[\Rightarrow 14=100{{a}_{1}}+10{{a}_{2}}+{{a}_{3}}\]
\[\Rightarrow 100{{a}_{1}}+10{{a}_{2}}+{{a}_{3}}=14.......\left( ii \right)\]
Now, it is given that when we put x = 15, we get f(x) = 18. Thus, we will get the following equation
\[f\left( 15 \right)={{a}_{1}}{{\left( 15 \right)}^{2}}+{{a}_{2}}\left( 15 \right)+{{a}_{3}}\]
\[\Rightarrow 18=225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}}\]
\[\Rightarrow 225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}}=18......\left( iii \right)\]
Now, it is given that when we put x = 20, we get f(x) = 28. Thus, we will get the following equation
\[f\left( 20 \right)={{a}_{1}}{{\left( 20 \right)}^{2}}+{{a}_{2}}\left( 20 \right)+{{a}_{3}}\]
\[\Rightarrow 28=400{{a}_{1}}+20{{a}_{2}}+{{a}_{3}}\]
\[\Rightarrow 400{{a}_{1}}+20{{a}_{2}}+{{a}_{3}}=28.......\left( iv \right)\]
Now, we will subtract (ii) from (iii). Thus, we will get the following equation.
\[\Rightarrow \left( 225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}} \right)-\left( 100{{a}_{1}}+10{{a}_{2}}+{{a}_{3}} \right)=18-14\]
\[\Rightarrow 225{{a}_{1}}-100{{a}_{1}}+15{{a}_{2}}-10{{a}_{2}}+{{a}_{3}}-{{a}_{3}}=4\]
\[\Rightarrow 125{{a}_{1}}+5{{a}_{2}}=4......\left( v \right)\]
Now, we will subtract (iii) from (iv). Thus, we will get the following equation
\[\Rightarrow \left( 400{{a}_{1}}+20{{a}_{2}}+{{a}_{3}} \right)-\left( 225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}} \right)=28-18\]
\[\Rightarrow 400{{a}_{1}}-225{{a}_{1}}+20{{a}_{2}}-15{{a}_{2}}+{{a}_{3}}-{{a}_{3}}=10\]
\[\Rightarrow 175{{a}_{1}}+5{{a}_{2}}=10......\left( vi \right)\]
Now, we will subtract (v) from (vi). Thus, we will get the following equation.
\[\Rightarrow \left( 175{{a}_{1}}+5{{a}_{2}} \right)-\left( 125{{a}_{1}}+5{{a}_{2}} \right)=10-4\]
\[\Rightarrow 175{{a}_{1}}-125{{a}_{1}}+5{{a}_{2}}-5{{a}_{2}}=6\]
\[\Rightarrow 50{{a}_{1}}=6\]
\[\Rightarrow {{a}_{1}}=\dfrac{6}{50}\]
\[\Rightarrow {{a}_{1}}=\dfrac{3}{25}......\left( vii \right)\]
Now, we will put the value \[{{a}_{1}}\] from (vii) to (v). Thus, we will get the following equation.
\[\Rightarrow 125\left( \dfrac{3}{25} \right)+5{{a}_{2}}=4\]
\[\Rightarrow 15+5{{a}_{2}}=4\]
\[\Rightarrow 5{{a}_{2}}=4-15\]
\[\Rightarrow 5{{a}_{2}}=-11\]
\[\Rightarrow {{a}_{2}}=\dfrac{-11}{5}....\left( viii \right)\]
Now, we will put the values of \[{{a}_{1}}\] and \[{{a}_{2}}\] from (vii) and (viii) to (ii). Thus, we will get the following equation.
\[\Rightarrow 100\left( \dfrac{3}{25} \right)+10\left( \dfrac{-11}{5} \right)+{{a}_{3}}=14\]
\[\Rightarrow 12-22+{{a}_{3}}=14\]
\[\Rightarrow -10+{{a}_{3}}=14\]
\[\Rightarrow {{a}_{3}}=24......\left( ix \right)\]
Now, we will put the values of \[{{a}_{1}},{{a}_{2}},{{a}_{3}}\] from (vii), (viii) and (ix) into (i). Thus, we will get,
\[f\left( x \right)=\dfrac{3}{25}{{x}^{2}}-\dfrac{11}{5}x+24\]
Now, we have to find the value of f(12). For this, we will simply put x = 12. Thus, we will get,
\[f\left( 12 \right)=\dfrac{3}{25}{{\left( 12 \right)}^{2}}-\dfrac{11}{5}\left( 12 \right)+24\]
\[\Rightarrow f\left( 12 \right)=\dfrac{3}{25}\left( 144 \right)-\dfrac{11\times 12}{5}+24\]
\[\Rightarrow f\left( 12 \right)=\dfrac{432}{25}-\dfrac{132}{5}+24\]
\[\Rightarrow f\left( 12 \right)=17.28-26.5+24\]
\[\Rightarrow f\left( 12 \right)=14.88\]
Hence, option (b) is the right answer.
So, the correct answer is “Option (b)”.
Note: While solving the question, we have assumed that f(x) is a quadratic polynomial. There may be chances that f(x) is a polynomial of a higher order. Also, it may be possible that f(x) is not even a polynomial, it is some other function. That’s why the value of f(12) obtained is not exact, it is estimated on the basis that f(x) is a quadratic polynomial.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

