
Given that the value of \[I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{dx}{\left( 1+{{e}^{\sin x}} \right)\left( 2-\cos 2x \right)}}dx\] then find the value of $27{{I}^{2}}$
Answer
509.7k+ views
Hint: To solve this question, we will first of all calculate the value of I using several integral formulas and properties. Firstly we will use
\[\int\limits_{b}^{a}{f\left( x \right)dx=\int\limits_{a}^{b}{f\left( a+b-x \right)}}dx\]
Then, we will obtain 2 values of I and add them up. We have now obtained value of 2I then we will use several trigonometric identity as stated \[\cos 2\theta =2{{\cos }^{2}}\theta -1,{{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta \text{ and }\cos \theta =\dfrac{1}{\sec \theta }\]. After applying all this, we will simplify value of 2I and then apply integration formula \[\int\limits_{b}^{a}{\dfrac{1}{{{x}^{2}}+{{a}^{2}}}dx=\dfrac{1}{a}{{\tan }^{-1}}}\dfrac{x}{a}\] to get results.
\[I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{dx}{\left( 1+{{e}^{\sin x}} \right)\left( 2-\cos 2x \right)}}dx\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Complete step-by-step answer:
We have a property of definite integral given as below:
\[\int\limits_{b}^{a}{f\left( x \right)dx=\int\limits_{a}^{b}{f\left( a+b-x \right)}}dx\]
So, we can replace x by a+b-x then, we have $a=\dfrac{-\pi }{4}\text{ and b}=\dfrac{\pi }{4}$
Then, \[a+b-x=\dfrac{-\pi }{4}+\dfrac{\pi }{4}-x=-x\]
Using this value of a+b-x= -x and above stated property of definite integral we have;
\[I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{dx}{\left( 1+{{e}^{-\sin x}} \right)\left( 2-\cos 2x \right)}}\]
Now, $\cos \left( -\theta \right)=\cos \theta $ Using this in above we get:
\[I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{dx}{\left( 1+{{e}^{-\sin x}} \right)\left( 2-\cos 2x \right)}}\]
Writing ${{e}^{-\sin x}}=\dfrac{1}{{{e}^{\sin x}}}$ we get:
\[\begin{align}
& I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{dx}{\left( 1+\dfrac{1}{{{e}^{\sin x}}} \right)\left( 2-\cos 2x \right)}} \\
& I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{dx}{\left( \dfrac{{{e}^{\sin x}}+1}{{{e}^{\sin x}}} \right)\left( 2-\cos 2x \right)}} \\
& I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{{{e}^{\sin x}}}{\left( 1+{{e}^{\sin x}} \right)\left( 2-\cos 2x \right)}}dx\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
Now adding equation (i) and (ii) we get:
\[2I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{1+{{e}^{\sin x}}}{\left( 1+{{e}^{\sin x}} \right)\left( 2-\cos 2x \right)}}dx\]
Cancelling common term $\left( 1+{{e}^{\sin x}} \right)$ we get:
\[2I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{1}{\left( 2-\cos 2x \right)}}dx\]
Now, we have a trigonometric identity of $\cos \theta $ as $\cos 2\theta =-1+2{{\cos }^{2}}\theta $
Using this in above we get:
\[\begin{align}
& 2I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{1}{\left( 2-\left( -1+2{{\cos }^{2}}x \right) \right)}}dx \\
& 2I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{1}{\left( 3-2{{\cos }^{2}}x \right)}}dx \\
\end{align}\]
Now, dividing both numerator and denominator by ${{\cos }^{2}}x$ and using $\dfrac{1}{{{\cos }^{2}}x}=se{{x}^{2}}x$ in numerator we get:
\[\begin{align}
& 2I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{{{\sec }^{2}}x}{\dfrac{3-2{{\cos }^{2}}x}{{{\cos }^{2}}x}}}dx \\
& 2I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{{{\sec }^{2}}x}{3{{\sec }^{2}}x-2}}dx \\
\end{align}\]
Now, we have a trigonometric identity relating ${{\sec }^{2}}\theta \text{ and ta}{{\text{n}}^{\text{2}}}\theta $ as ${{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ in above we get:
\[\begin{align}
& 2I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{{{\sec }^{2}}x}{3\left( 1+{{\tan }^{2}}\theta \right)-2}}dx \\
& 2I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{{{\sec }^{2}}x}{1+3{{\tan }^{2}}x}}dx \\
\end{align}\]
Let tan x = t
Differentiating with respect to x both sides we get:
\[{{\sec }^{2}}x=\dfrac{dt}{dx}\Rightarrow se{{x}^{2}}xdx=dt\]
When $x=\dfrac{-\pi }{4}$ then $\tan x=\tan \left( \dfrac{-\pi }{4} \right)=-1$ and when $x=\dfrac{\pi }{4}$ then $\tan x=\tan \left( \dfrac{\pi }{4} \right)=1$v
Using this all substitution in above we get:
\[2I=\dfrac{2}{\pi }\int\limits_{-1}^{+1}{\dfrac{dt}{1+3{{t}^{2}}}}\]
Taking $\dfrac{1}{3}$ common:
\[\begin{align}
& 2I=\dfrac{2}{\pi }\int\limits_{-1}^{+1}{\left( \dfrac{1}{3} \right)\dfrac{dt}{\left( {{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}+{{t}^{2}} \right)}} \\
& 2I=\dfrac{2}{\pi }\int\limits_{-1}^{+1}{\dfrac{dt}{{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}+{{t}^{2}}}} \\
\end{align}\]
We have a integral property as:
\[\int\limits_{c}^{b}{\dfrac{dt}{{{x}^{2}}+{{a}^{2}}}=\dfrac{1}{a}{{\tan }^{-1}}}\left. \dfrac{x}{a} \right|_{c}^{b}\]
Using this in above we get:
\[\begin{align}
& 2I=\dfrac{2}{3\pi }\left( \dfrac{1}{\dfrac{1}{\sqrt{3}}}\left( {{\tan }^{-1}}\sqrt{3}t \right) \right)_{-1}^{+1} \\
& 2I=\dfrac{2}{3\pi }\times \sqrt{3}\left( {{\tan }^{-1}}\sqrt{3}t \right)_{-1}^{+1} \\
& 2I=\dfrac{2}{3\pi }\sqrt{3}\left\{ {{\tan }^{-1}}\sqrt{3}-{{\tan }^{-1}}\sqrt{3}\left( -1 \right) \right\} \\
& 2I=\dfrac{2}{3\pi }\sqrt{3}\left\{ {{\tan }^{-1}}\sqrt{3}-{{\tan }^{-1}}\left( -\sqrt{3} \right) \right\} \\
\end{align}\]
Using $\tan \left( -\theta \right)=-\tan \theta $ we get:
\[\begin{align}
& 2I=\dfrac{2}{3\pi }\sqrt{3}\left\{ {{\tan }^{-1}}\sqrt{3}+{{\tan }^{-1}}\sqrt{3} \right\} \\
& 2I=\dfrac{2}{3\pi }\sqrt{3}\text{ }2{{\tan }^{-1}}\sqrt{3} \\
\end{align}\]
Now, we have $\tan \dfrac{\pi }{3}=\sqrt{3}$ applying ${{\tan }^{-1}}$ both sides we get:
\[\begin{align}
& \dfrac{\pi }{3}={{\tan }^{-1}}\left( \sqrt{3} \right) \\
& 2I=\dfrac{2}{3\pi }\sqrt{3}\dfrac{\pi }{3}2 \\
& I=\dfrac{2\sqrt{3}}{9} \\
\end{align}\]
Now, we have obtained $I=\dfrac{2\sqrt{3}}{9}$
Then, value of
\[\begin{align}
& 27{{I}^{2}}=27{{\left( \dfrac{2\sqrt{3}}{9} \right)}^{2}} \\
& \Rightarrow \dfrac{27\times 4\times 3}{9\times 9} \\
& \Rightarrow \dfrac{3\times 3\times 4}{9}=4 \\
\end{align}\]
Therefore, the value of \[27{{I}^{2}}=4\]
Note: Another way to solve after step \[2I=\dfrac{2}{\pi }\int\limits_{-1}^{+1}{\dfrac{dt}{1+3{{t}^{2}}}}\]
Let us assume ${{s}^{2}}=3{{t}^{2}}$ then differentiating with respect to t we get:
\[\begin{align}
& 2ds=3\times 2dt \\
& \Rightarrow \dfrac{2ds}{6}=dt\Rightarrow \dfrac{ds}{3}=dt \\
\end{align}\]
Also as ${{s}^{2}}=3{{t}^{2}}$ taking square root both sides $s=\pm \sqrt{3}$
When t = -1 then $s=\pm \sqrt{3}\left( -1 \right)=\pm -\sqrt{3}=\mp \sqrt{3}$
When t = +1 then $s=\pm \sqrt{3}$
So, we have \[t=-1\Rightarrow s=-\sqrt{3}\text{ and }t=1\Rightarrow s+\sqrt{3}\] as integral units are always from lower to higher \[2I=\dfrac{2}{3\pi }\int\limits_{-\sqrt{3}}^{+\sqrt{3}}{\dfrac{1}{3}\dfrac{ds}{1+{{s}^{2}}}}\]
Now, we can use formula \[\int\limits_{c}^{b}{\dfrac{dt}{{{x}^{2}}+{{a}^{2}}}={{\tan }^{-1}}}\left. \dfrac{x}{a} \right|_{c}^{b}\] result would anyway be the same.
\[\int\limits_{b}^{a}{f\left( x \right)dx=\int\limits_{a}^{b}{f\left( a+b-x \right)}}dx\]
Then, we will obtain 2 values of I and add them up. We have now obtained value of 2I then we will use several trigonometric identity as stated \[\cos 2\theta =2{{\cos }^{2}}\theta -1,{{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta \text{ and }\cos \theta =\dfrac{1}{\sec \theta }\]. After applying all this, we will simplify value of 2I and then apply integration formula \[\int\limits_{b}^{a}{\dfrac{1}{{{x}^{2}}+{{a}^{2}}}dx=\dfrac{1}{a}{{\tan }^{-1}}}\dfrac{x}{a}\] to get results.
\[I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{dx}{\left( 1+{{e}^{\sin x}} \right)\left( 2-\cos 2x \right)}}dx\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)}\]
Complete step-by-step answer:
We have a property of definite integral given as below:
\[\int\limits_{b}^{a}{f\left( x \right)dx=\int\limits_{a}^{b}{f\left( a+b-x \right)}}dx\]
So, we can replace x by a+b-x then, we have $a=\dfrac{-\pi }{4}\text{ and b}=\dfrac{\pi }{4}$
Then, \[a+b-x=\dfrac{-\pi }{4}+\dfrac{\pi }{4}-x=-x\]
Using this value of a+b-x= -x and above stated property of definite integral we have;
\[I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{dx}{\left( 1+{{e}^{-\sin x}} \right)\left( 2-\cos 2x \right)}}\]
Now, $\cos \left( -\theta \right)=\cos \theta $ Using this in above we get:
\[I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{dx}{\left( 1+{{e}^{-\sin x}} \right)\left( 2-\cos 2x \right)}}\]
Writing ${{e}^{-\sin x}}=\dfrac{1}{{{e}^{\sin x}}}$ we get:
\[\begin{align}
& I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{dx}{\left( 1+\dfrac{1}{{{e}^{\sin x}}} \right)\left( 2-\cos 2x \right)}} \\
& I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{dx}{\left( \dfrac{{{e}^{\sin x}}+1}{{{e}^{\sin x}}} \right)\left( 2-\cos 2x \right)}} \\
& I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{{{e}^{\sin x}}}{\left( 1+{{e}^{\sin x}} \right)\left( 2-\cos 2x \right)}}dx\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (ii)} \\
\end{align}\]
Now adding equation (i) and (ii) we get:
\[2I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{1+{{e}^{\sin x}}}{\left( 1+{{e}^{\sin x}} \right)\left( 2-\cos 2x \right)}}dx\]
Cancelling common term $\left( 1+{{e}^{\sin x}} \right)$ we get:
\[2I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{1}{\left( 2-\cos 2x \right)}}dx\]
Now, we have a trigonometric identity of $\cos \theta $ as $\cos 2\theta =-1+2{{\cos }^{2}}\theta $
Using this in above we get:
\[\begin{align}
& 2I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{1}{\left( 2-\left( -1+2{{\cos }^{2}}x \right) \right)}}dx \\
& 2I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{1}{\left( 3-2{{\cos }^{2}}x \right)}}dx \\
\end{align}\]
Now, dividing both numerator and denominator by ${{\cos }^{2}}x$ and using $\dfrac{1}{{{\cos }^{2}}x}=se{{x}^{2}}x$ in numerator we get:
\[\begin{align}
& 2I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{{{\sec }^{2}}x}{\dfrac{3-2{{\cos }^{2}}x}{{{\cos }^{2}}x}}}dx \\
& 2I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{{{\sec }^{2}}x}{3{{\sec }^{2}}x-2}}dx \\
\end{align}\]
Now, we have a trigonometric identity relating ${{\sec }^{2}}\theta \text{ and ta}{{\text{n}}^{\text{2}}}\theta $ as ${{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $ in above we get:
\[\begin{align}
& 2I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{{{\sec }^{2}}x}{3\left( 1+{{\tan }^{2}}\theta \right)-2}}dx \\
& 2I=\dfrac{2}{\pi }\int\limits_{\dfrac{-\pi }{4}}^{\dfrac{\pi }{4}}{\dfrac{{{\sec }^{2}}x}{1+3{{\tan }^{2}}x}}dx \\
\end{align}\]
Let tan x = t
Differentiating with respect to x both sides we get:
\[{{\sec }^{2}}x=\dfrac{dt}{dx}\Rightarrow se{{x}^{2}}xdx=dt\]
When $x=\dfrac{-\pi }{4}$ then $\tan x=\tan \left( \dfrac{-\pi }{4} \right)=-1$ and when $x=\dfrac{\pi }{4}$ then $\tan x=\tan \left( \dfrac{\pi }{4} \right)=1$v
Using this all substitution in above we get:
\[2I=\dfrac{2}{\pi }\int\limits_{-1}^{+1}{\dfrac{dt}{1+3{{t}^{2}}}}\]
Taking $\dfrac{1}{3}$ common:
\[\begin{align}
& 2I=\dfrac{2}{\pi }\int\limits_{-1}^{+1}{\left( \dfrac{1}{3} \right)\dfrac{dt}{\left( {{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}+{{t}^{2}} \right)}} \\
& 2I=\dfrac{2}{\pi }\int\limits_{-1}^{+1}{\dfrac{dt}{{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}+{{t}^{2}}}} \\
\end{align}\]
We have a integral property as:
\[\int\limits_{c}^{b}{\dfrac{dt}{{{x}^{2}}+{{a}^{2}}}=\dfrac{1}{a}{{\tan }^{-1}}}\left. \dfrac{x}{a} \right|_{c}^{b}\]
Using this in above we get:
\[\begin{align}
& 2I=\dfrac{2}{3\pi }\left( \dfrac{1}{\dfrac{1}{\sqrt{3}}}\left( {{\tan }^{-1}}\sqrt{3}t \right) \right)_{-1}^{+1} \\
& 2I=\dfrac{2}{3\pi }\times \sqrt{3}\left( {{\tan }^{-1}}\sqrt{3}t \right)_{-1}^{+1} \\
& 2I=\dfrac{2}{3\pi }\sqrt{3}\left\{ {{\tan }^{-1}}\sqrt{3}-{{\tan }^{-1}}\sqrt{3}\left( -1 \right) \right\} \\
& 2I=\dfrac{2}{3\pi }\sqrt{3}\left\{ {{\tan }^{-1}}\sqrt{3}-{{\tan }^{-1}}\left( -\sqrt{3} \right) \right\} \\
\end{align}\]
Using $\tan \left( -\theta \right)=-\tan \theta $ we get:
\[\begin{align}
& 2I=\dfrac{2}{3\pi }\sqrt{3}\left\{ {{\tan }^{-1}}\sqrt{3}+{{\tan }^{-1}}\sqrt{3} \right\} \\
& 2I=\dfrac{2}{3\pi }\sqrt{3}\text{ }2{{\tan }^{-1}}\sqrt{3} \\
\end{align}\]
Now, we have $\tan \dfrac{\pi }{3}=\sqrt{3}$ applying ${{\tan }^{-1}}$ both sides we get:
\[\begin{align}
& \dfrac{\pi }{3}={{\tan }^{-1}}\left( \sqrt{3} \right) \\
& 2I=\dfrac{2}{3\pi }\sqrt{3}\dfrac{\pi }{3}2 \\
& I=\dfrac{2\sqrt{3}}{9} \\
\end{align}\]
Now, we have obtained $I=\dfrac{2\sqrt{3}}{9}$
Then, value of
\[\begin{align}
& 27{{I}^{2}}=27{{\left( \dfrac{2\sqrt{3}}{9} \right)}^{2}} \\
& \Rightarrow \dfrac{27\times 4\times 3}{9\times 9} \\
& \Rightarrow \dfrac{3\times 3\times 4}{9}=4 \\
\end{align}\]
Therefore, the value of \[27{{I}^{2}}=4\]
Note: Another way to solve after step \[2I=\dfrac{2}{\pi }\int\limits_{-1}^{+1}{\dfrac{dt}{1+3{{t}^{2}}}}\]
Let us assume ${{s}^{2}}=3{{t}^{2}}$ then differentiating with respect to t we get:
\[\begin{align}
& 2ds=3\times 2dt \\
& \Rightarrow \dfrac{2ds}{6}=dt\Rightarrow \dfrac{ds}{3}=dt \\
\end{align}\]
Also as ${{s}^{2}}=3{{t}^{2}}$ taking square root both sides $s=\pm \sqrt{3}$
When t = -1 then $s=\pm \sqrt{3}\left( -1 \right)=\pm -\sqrt{3}=\mp \sqrt{3}$
When t = +1 then $s=\pm \sqrt{3}$
So, we have \[t=-1\Rightarrow s=-\sqrt{3}\text{ and }t=1\Rightarrow s+\sqrt{3}\] as integral units are always from lower to higher \[2I=\dfrac{2}{3\pi }\int\limits_{-\sqrt{3}}^{+\sqrt{3}}{\dfrac{1}{3}\dfrac{ds}{1+{{s}^{2}}}}\]
Now, we can use formula \[\int\limits_{c}^{b}{\dfrac{dt}{{{x}^{2}}+{{a}^{2}}}={{\tan }^{-1}}}\left. \dfrac{x}{a} \right|_{c}^{b}\] result would anyway be the same.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
A deep narrow valley with steep sides formed as a result class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE
