Given that $\overrightarrow a .\overrightarrow b = 0$ and $\overrightarrow a \times \overrightarrow b = 0$. What can you conclude about the vectors $\overrightarrow a $ and $\overrightarrow b $ ?
Last updated date: 28th Mar 2023
•
Total views: 306.9k
•
Views today: 4.85k
Answer
306.9k+ views
Hint: Here, we need to draw a conclusion about the vectors $\overrightarrow a $ and $\overrightarrow b $from the statements $\overrightarrow a .\overrightarrow b = 0$ and $\overrightarrow a \times \overrightarrow b = 0$ by considering $\overrightarrow a .\overrightarrow b = \left| a \right|.\left| b \right|.\cos \theta $and $\overrightarrow a \times \overrightarrow b = \left| a \right|.\left| b \right|.\sin \theta $.
Complete step-by-step answer:
Given,
i. $\overrightarrow a .\overrightarrow b = 0$.
Here, $\overrightarrow a .\overrightarrow b = 0$ is the dot product of the vectors $\overrightarrow a $ and $\overrightarrow b $.As, we know the dot product of two vectors can be written as:
$\overrightarrow a .\overrightarrow b = \left| a \right|.\left| b \right|.\cos \theta \to (1)$
Where:
$\left| a \right|$ Is the magnitude of$\overrightarrow a $, $\left| b \right|$is the magnitude of $\overrightarrow b $and $\theta $ is the angle between $\overrightarrow a $ and $\overrightarrow b $.
It is given that $\overrightarrow a .\overrightarrow b = 0$ i.e..,
$\left| a \right|.\left| b \right|.\cos \theta = 0 \to (2)$
So, from equation (2) we can say that the dot product of vectors $\overrightarrow a $ and $\overrightarrow b $is ‘0’ in the following cases.
(i) $\left| a \right| = 0$i.e.., the magnitude of $\overrightarrow a $is zero.
(ii) $\left| b \right| = 0$i.e.., the magnitude of $\overrightarrow b $is zero.
(iii) $\overrightarrow a \bot \overrightarrow b $i.e.., the angle between the vectors is${90^o}$$[\because \cos {90^o} = 0]$.
Hence, we can conclude that $\overrightarrow a .\overrightarrow b = 0$if ‘$\left| a \right| = 0$’or if ‘$\left| b \right| = 0$’or ‘if the vectors are perpendicular to each other.
ii. $\overrightarrow a \times \overrightarrow b = 0$.
Here, $\overrightarrow a \times \overrightarrow b = 0$ is the cross product of the vectors $\overrightarrow a $ and $\overrightarrow b $.As, we know the cross product of two vectors can be written as:
$\overrightarrow a \times \overrightarrow b = \left| a \right|.\left| b \right|.\sin \theta \to (1)$
Where:
$\left| a \right|$ Is the magnitude of$\overrightarrow a $, $\left| b \right|$is the magnitude of $\overrightarrow b $and $\theta $ is the angle between $\overrightarrow a $ and $\overrightarrow b $.
It is given that $\overrightarrow a \times \overrightarrow b = 0$ i.e..,
$\left| a \right|.\left| b \right|.\sin \theta = 0 \to (2)$
So, from equation (2) we can say that the cross product of vectors $\overrightarrow a $ and $\overrightarrow b $is ‘0’ in the following cases
(i) $\left| a \right| = 0$i.e.., the magnitude of $\overrightarrow a $is zero.
(ii) $\left| b \right| = 0$i.e.., the magnitude of $\overrightarrow b $is zero.
(iii)$\overrightarrow a \parallel \overrightarrow b $i.e.., the angle between the vectors is${0^o}$$[\because \sin {0^o} = 0]$.
Hence, we can conclude that $\overrightarrow a \times \overrightarrow b = 0$if ‘$\left| a \right| = 0$’or if ‘$\left| b \right| = 0$’or ‘if the vectors are parallel to each other.
Note: The dot product of two vectors will be $'0'$ if the vectors are perpendicular to each other (in case vectors are non-zero).Similarly, the cross product of two vectors will be $'0'$ if the vectors are parallel to each other (in case vectors are non-zero).
Complete step-by-step answer:
Given,
i. $\overrightarrow a .\overrightarrow b = 0$.
Here, $\overrightarrow a .\overrightarrow b = 0$ is the dot product of the vectors $\overrightarrow a $ and $\overrightarrow b $.As, we know the dot product of two vectors can be written as:
$\overrightarrow a .\overrightarrow b = \left| a \right|.\left| b \right|.\cos \theta \to (1)$
Where:
$\left| a \right|$ Is the magnitude of$\overrightarrow a $, $\left| b \right|$is the magnitude of $\overrightarrow b $and $\theta $ is the angle between $\overrightarrow a $ and $\overrightarrow b $.
It is given that $\overrightarrow a .\overrightarrow b = 0$ i.e..,
$\left| a \right|.\left| b \right|.\cos \theta = 0 \to (2)$
So, from equation (2) we can say that the dot product of vectors $\overrightarrow a $ and $\overrightarrow b $is ‘0’ in the following cases.
(i) $\left| a \right| = 0$i.e.., the magnitude of $\overrightarrow a $is zero.
(ii) $\left| b \right| = 0$i.e.., the magnitude of $\overrightarrow b $is zero.
(iii) $\overrightarrow a \bot \overrightarrow b $i.e.., the angle between the vectors is${90^o}$$[\because \cos {90^o} = 0]$.
Hence, we can conclude that $\overrightarrow a .\overrightarrow b = 0$if ‘$\left| a \right| = 0$’or if ‘$\left| b \right| = 0$’or ‘if the vectors are perpendicular to each other.
ii. $\overrightarrow a \times \overrightarrow b = 0$.
Here, $\overrightarrow a \times \overrightarrow b = 0$ is the cross product of the vectors $\overrightarrow a $ and $\overrightarrow b $.As, we know the cross product of two vectors can be written as:
$\overrightarrow a \times \overrightarrow b = \left| a \right|.\left| b \right|.\sin \theta \to (1)$
Where:
$\left| a \right|$ Is the magnitude of$\overrightarrow a $, $\left| b \right|$is the magnitude of $\overrightarrow b $and $\theta $ is the angle between $\overrightarrow a $ and $\overrightarrow b $.
It is given that $\overrightarrow a \times \overrightarrow b = 0$ i.e..,
$\left| a \right|.\left| b \right|.\sin \theta = 0 \to (2)$
So, from equation (2) we can say that the cross product of vectors $\overrightarrow a $ and $\overrightarrow b $is ‘0’ in the following cases
(i) $\left| a \right| = 0$i.e.., the magnitude of $\overrightarrow a $is zero.
(ii) $\left| b \right| = 0$i.e.., the magnitude of $\overrightarrow b $is zero.
(iii)$\overrightarrow a \parallel \overrightarrow b $i.e.., the angle between the vectors is${0^o}$$[\because \sin {0^o} = 0]$.
Hence, we can conclude that $\overrightarrow a \times \overrightarrow b = 0$if ‘$\left| a \right| = 0$’or if ‘$\left| b \right| = 0$’or ‘if the vectors are parallel to each other.
Note: The dot product of two vectors will be $'0'$ if the vectors are perpendicular to each other (in case vectors are non-zero).Similarly, the cross product of two vectors will be $'0'$ if the vectors are parallel to each other (in case vectors are non-zero).
Recently Updated Pages
If abc are pthqth and rth terms of a GP then left fraccb class 11 maths JEE_Main

If the pthqth and rth term of a GP are abc respectively class 11 maths JEE_Main

If abcdare any four consecutive coefficients of any class 11 maths JEE_Main

If A1A2 are the two AMs between two numbers a and b class 11 maths JEE_Main

If pthqthrth and sth terms of an AP be in GP then p class 11 maths JEE_Main

One root of the equation cos x x + frac12 0 lies in class 11 maths JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
