Answer

Verified

484.2k+ views

Hint: Here, we need to draw a conclusion about the vectors $\overrightarrow a $ and $\overrightarrow b $from the statements $\overrightarrow a .\overrightarrow b = 0$ and $\overrightarrow a \times \overrightarrow b = 0$ by considering $\overrightarrow a .\overrightarrow b = \left| a \right|.\left| b \right|.\cos \theta $and $\overrightarrow a \times \overrightarrow b = \left| a \right|.\left| b \right|.\sin \theta $.

Complete step-by-step answer:

Given,

i. $\overrightarrow a .\overrightarrow b = 0$.

Here, $\overrightarrow a .\overrightarrow b = 0$ is the dot product of the vectors $\overrightarrow a $ and $\overrightarrow b $.As, we know the dot product of two vectors can be written as:

$\overrightarrow a .\overrightarrow b = \left| a \right|.\left| b \right|.\cos \theta \to (1)$

Where:

$\left| a \right|$ Is the magnitude of$\overrightarrow a $, $\left| b \right|$is the magnitude of $\overrightarrow b $and $\theta $ is the angle between $\overrightarrow a $ and $\overrightarrow b $.

It is given that $\overrightarrow a .\overrightarrow b = 0$ i.e..,

$\left| a \right|.\left| b \right|.\cos \theta = 0 \to (2)$

So, from equation (2) we can say that the dot product of vectors $\overrightarrow a $ and $\overrightarrow b $is ‘0’ in the following cases.

(i) $\left| a \right| = 0$i.e.., the magnitude of $\overrightarrow a $is zero.

(ii) $\left| b \right| = 0$i.e.., the magnitude of $\overrightarrow b $is zero.

(iii) $\overrightarrow a \bot \overrightarrow b $i.e.., the angle between the vectors is${90^o}$$[\because \cos {90^o} = 0]$.

Hence, we can conclude that $\overrightarrow a .\overrightarrow b = 0$if ‘$\left| a \right| = 0$’or if ‘$\left| b \right| = 0$’or ‘if the vectors are perpendicular to each other.

ii. $\overrightarrow a \times \overrightarrow b = 0$.

Here, $\overrightarrow a \times \overrightarrow b = 0$ is the cross product of the vectors $\overrightarrow a $ and $\overrightarrow b $.As, we know the cross product of two vectors can be written as:

$\overrightarrow a \times \overrightarrow b = \left| a \right|.\left| b \right|.\sin \theta \to (1)$

Where:

$\left| a \right|$ Is the magnitude of$\overrightarrow a $, $\left| b \right|$is the magnitude of $\overrightarrow b $and $\theta $ is the angle between $\overrightarrow a $ and $\overrightarrow b $.

It is given that $\overrightarrow a \times \overrightarrow b = 0$ i.e..,

$\left| a \right|.\left| b \right|.\sin \theta = 0 \to (2)$

So, from equation (2) we can say that the cross product of vectors $\overrightarrow a $ and $\overrightarrow b $is ‘0’ in the following cases

(i) $\left| a \right| = 0$i.e.., the magnitude of $\overrightarrow a $is zero.

(ii) $\left| b \right| = 0$i.e.., the magnitude of $\overrightarrow b $is zero.

(iii)$\overrightarrow a \parallel \overrightarrow b $i.e.., the angle between the vectors is${0^o}$$[\because \sin {0^o} = 0]$.

Hence, we can conclude that $\overrightarrow a \times \overrightarrow b = 0$if ‘$\left| a \right| = 0$’or if ‘$\left| b \right| = 0$’or ‘if the vectors are parallel to each other.

Note: The dot product of two vectors will be $'0'$ if the vectors are perpendicular to each other (in case vectors are non-zero).Similarly, the cross product of two vectors will be $'0'$ if the vectors are parallel to each other (in case vectors are non-zero).

Complete step-by-step answer:

Given,

i. $\overrightarrow a .\overrightarrow b = 0$.

Here, $\overrightarrow a .\overrightarrow b = 0$ is the dot product of the vectors $\overrightarrow a $ and $\overrightarrow b $.As, we know the dot product of two vectors can be written as:

$\overrightarrow a .\overrightarrow b = \left| a \right|.\left| b \right|.\cos \theta \to (1)$

Where:

$\left| a \right|$ Is the magnitude of$\overrightarrow a $, $\left| b \right|$is the magnitude of $\overrightarrow b $and $\theta $ is the angle between $\overrightarrow a $ and $\overrightarrow b $.

It is given that $\overrightarrow a .\overrightarrow b = 0$ i.e..,

$\left| a \right|.\left| b \right|.\cos \theta = 0 \to (2)$

So, from equation (2) we can say that the dot product of vectors $\overrightarrow a $ and $\overrightarrow b $is ‘0’ in the following cases.

(i) $\left| a \right| = 0$i.e.., the magnitude of $\overrightarrow a $is zero.

(ii) $\left| b \right| = 0$i.e.., the magnitude of $\overrightarrow b $is zero.

(iii) $\overrightarrow a \bot \overrightarrow b $i.e.., the angle between the vectors is${90^o}$$[\because \cos {90^o} = 0]$.

Hence, we can conclude that $\overrightarrow a .\overrightarrow b = 0$if ‘$\left| a \right| = 0$’or if ‘$\left| b \right| = 0$’or ‘if the vectors are perpendicular to each other.

ii. $\overrightarrow a \times \overrightarrow b = 0$.

Here, $\overrightarrow a \times \overrightarrow b = 0$ is the cross product of the vectors $\overrightarrow a $ and $\overrightarrow b $.As, we know the cross product of two vectors can be written as:

$\overrightarrow a \times \overrightarrow b = \left| a \right|.\left| b \right|.\sin \theta \to (1)$

Where:

$\left| a \right|$ Is the magnitude of$\overrightarrow a $, $\left| b \right|$is the magnitude of $\overrightarrow b $and $\theta $ is the angle between $\overrightarrow a $ and $\overrightarrow b $.

It is given that $\overrightarrow a \times \overrightarrow b = 0$ i.e..,

$\left| a \right|.\left| b \right|.\sin \theta = 0 \to (2)$

So, from equation (2) we can say that the cross product of vectors $\overrightarrow a $ and $\overrightarrow b $is ‘0’ in the following cases

(i) $\left| a \right| = 0$i.e.., the magnitude of $\overrightarrow a $is zero.

(ii) $\left| b \right| = 0$i.e.., the magnitude of $\overrightarrow b $is zero.

(iii)$\overrightarrow a \parallel \overrightarrow b $i.e.., the angle between the vectors is${0^o}$$[\because \sin {0^o} = 0]$.

Hence, we can conclude that $\overrightarrow a \times \overrightarrow b = 0$if ‘$\left| a \right| = 0$’or if ‘$\left| b \right| = 0$’or ‘if the vectors are parallel to each other.

Note: The dot product of two vectors will be $'0'$ if the vectors are perpendicular to each other (in case vectors are non-zero).Similarly, the cross product of two vectors will be $'0'$ if the vectors are parallel to each other (in case vectors are non-zero).

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which places in India experience sunrise first and class 9 social science CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How do you graph the function fx 4x class 9 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE