
Given that for each $a \in \left( {0,1} \right)$ ,$\mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {{t^a}{{\left( {1 - t} \right)}^{a - 1}}dt} $ exists.
Let this limit be \[g\left( a \right)\] . In addition, it is given that the function $g\left( a \right)$ is differentiable on $\left( {0,1} \right)$, then the value of $g'\left( {\dfrac{1}{2}} \right)$ is?
A. $\dfrac{\pi }{2}$
B. $\pi $
C. $ - \dfrac{\pi }{2}$
D. 0
Answer
511.5k+ views
Hint: In the integral calculus, we are to find a function whose differential is given. Thus, integration is a process that is the inverse of differentiation.
Let $\dfrac{{dF\left( x \right)}}{{dx}} = f\left( x \right)$, then $\smallint f\left( x \right)dx = F\left( x \right) + C$ , where C is the integration constant.
The given limit \[g\left( a \right)\] is consists of definite integral, use the property of definite integral to find the relation between \[g\left( a \right)\] and \[g\left( {1 - a} \right)\] , so that the differential calculation on \[g\left( a \right)\] will be easy.
Complete step-by-step answer:
Simplifying given integral:
\[g\left( a \right) = \mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {{t^{ - a}}{{\left( {1 - t} \right)}^{a - 1}}} dt\]
For $a = 1 - h + h - a$,
\[g\left( {1 - h + h - a} \right) = \mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {{t^{ - \left( {1 - h + h - a} \right)}}{{\left( {1 - t} \right)}^{\left( {1 - h + h - a - 1} \right)}}} dt\]
\[g\left( {1 - a} \right) = \mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {{t^{a - 1}}{{\left( {1 - t} \right)}^{ - a}}} dt\]
Using the property of definite integral \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)dx} \]
i.e. replacing $t$ by $\left( {h + 1 - h - t} \right)$
\[g\left( {1 - a} \right) = \mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {{{\left( {h + 1 - h - t} \right)}^{a - 1}}{{\left( {1 - \left( {h + 1 - h - t} \right)} \right)}^{ - a}}} dt\]
\[
\Rightarrow \mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {{{\left( {1 - t} \right)}^{a - 1}}{{\left( {1 - 1 + t} \right)}^{ - a}}} dt \\
\Rightarrow \mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {{{\left( {1 - t} \right)}^{a - 1}}{{\left( t \right)}^{ - a}}} dt = g\left( a \right) \\
\]
\[ \Rightarrow g\left( a \right) = g\left( {1 - a} \right)\]
On differentiating both sides
\[g'\left( a \right)da = g'\left( {1 - a} \right)\left( { - 1} \right)da\]
\[g'\left( a \right) = - g'\left( {1 - a} \right)\]
\[g'\left( a \right) + g'\left( {1 - a} \right) = 0\]
calculating required \[g'\left( {\dfrac{1}{2}} \right)\]:
For \[a = \dfrac{1}{2}\]
\[g'\left( {\dfrac{1}{2}} \right) + g'\left( {1 - \dfrac{1}{2}} \right) = 0\]
\[ \Rightarrow g'\left( {\dfrac{1}{2}} \right) + g'\left( {\dfrac{1}{2}} \right) = 0\]
\[ \Rightarrow 2g'\left( {\dfrac{1}{2}} \right) = 0\]
\[ \Rightarrow g'\left( {\dfrac{1}{2}} \right) = 0\]
So, the correct answer is “Option D”.
Additional Information: If the function $f\left( x \right)$ is differentiable in \[x \in \left( {a,b} \right)\], then the function $f\left( x \right)$ must be continuous in \[x \in \left[ {a,b} \right]\].
Square brackets on interval $\left[ {a,b} \right]$ imply that the extreme points a, b are included along with the points between a and b.
Curve brackets on interval \[\left( {a,b} \right)\] implies that only the points between a and b are included.
Note: The $\mathop {\lim }\limits_{h \to {0^{{\text{ }} + }}} $i.e., limit h tends to ${0^ + }$because, for $h = 0$, ${t^{ - a}}$ or $\dfrac{1}{{{t^a}}}$ will be $\dfrac{1}{{{0^a}}}$ which is an indeterminate form, to avoid this situation limit h tends to ${0^ + }$ instead of 0.
$\mathop {\lim }\limits_{x \to {a^{{\text{ }} + }}} f\left( x \right)$ is the right-hand limit of the function $f\left( x \right)$ which is the value of $f\left( x \right)$ when $x$ tends to $a$ from the right.
$\mathop {\lim }\limits_{x \to {a^{{\text{ }} - }}} f\left( x \right)$ is the left-hand limit of the function $f\left( x \right)$ which is the value of $f\left( x \right)$ when $x$ tends to $a$ from the left.
The following are some important properties of definite integral, those will be useful in calculation definite integral more easily.
*$\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx$
*$\int\limits_a^b {f\left( x \right)} dx = - \int\limits_b^a {f\left( x \right)} dx$
*$\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx$
Let $\dfrac{{dF\left( x \right)}}{{dx}} = f\left( x \right)$, then $\smallint f\left( x \right)dx = F\left( x \right) + C$ , where C is the integration constant.
The given limit \[g\left( a \right)\] is consists of definite integral, use the property of definite integral to find the relation between \[g\left( a \right)\] and \[g\left( {1 - a} \right)\] , so that the differential calculation on \[g\left( a \right)\] will be easy.
Complete step-by-step answer:
Simplifying given integral:
\[g\left( a \right) = \mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {{t^{ - a}}{{\left( {1 - t} \right)}^{a - 1}}} dt\]
For $a = 1 - h + h - a$,
\[g\left( {1 - h + h - a} \right) = \mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {{t^{ - \left( {1 - h + h - a} \right)}}{{\left( {1 - t} \right)}^{\left( {1 - h + h - a - 1} \right)}}} dt\]
\[g\left( {1 - a} \right) = \mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {{t^{a - 1}}{{\left( {1 - t} \right)}^{ - a}}} dt\]
Using the property of definite integral \[\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)dx} \]
i.e. replacing $t$ by $\left( {h + 1 - h - t} \right)$
\[g\left( {1 - a} \right) = \mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {{{\left( {h + 1 - h - t} \right)}^{a - 1}}{{\left( {1 - \left( {h + 1 - h - t} \right)} \right)}^{ - a}}} dt\]
\[
\Rightarrow \mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {{{\left( {1 - t} \right)}^{a - 1}}{{\left( {1 - 1 + t} \right)}^{ - a}}} dt \\
\Rightarrow \mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {{{\left( {1 - t} \right)}^{a - 1}}{{\left( t \right)}^{ - a}}} dt = g\left( a \right) \\
\]
\[ \Rightarrow g\left( a \right) = g\left( {1 - a} \right)\]
On differentiating both sides
\[g'\left( a \right)da = g'\left( {1 - a} \right)\left( { - 1} \right)da\]
\[g'\left( a \right) = - g'\left( {1 - a} \right)\]
\[g'\left( a \right) + g'\left( {1 - a} \right) = 0\]
calculating required \[g'\left( {\dfrac{1}{2}} \right)\]:
For \[a = \dfrac{1}{2}\]
\[g'\left( {\dfrac{1}{2}} \right) + g'\left( {1 - \dfrac{1}{2}} \right) = 0\]
\[ \Rightarrow g'\left( {\dfrac{1}{2}} \right) + g'\left( {\dfrac{1}{2}} \right) = 0\]
\[ \Rightarrow 2g'\left( {\dfrac{1}{2}} \right) = 0\]
\[ \Rightarrow g'\left( {\dfrac{1}{2}} \right) = 0\]
So, the correct answer is “Option D”.
Additional Information: If the function $f\left( x \right)$ is differentiable in \[x \in \left( {a,b} \right)\], then the function $f\left( x \right)$ must be continuous in \[x \in \left[ {a,b} \right]\].
Square brackets on interval $\left[ {a,b} \right]$ imply that the extreme points a, b are included along with the points between a and b.
Curve brackets on interval \[\left( {a,b} \right)\] implies that only the points between a and b are included.
Note: The $\mathop {\lim }\limits_{h \to {0^{{\text{ }} + }}} $i.e., limit h tends to ${0^ + }$because, for $h = 0$, ${t^{ - a}}$ or $\dfrac{1}{{{t^a}}}$ will be $\dfrac{1}{{{0^a}}}$ which is an indeterminate form, to avoid this situation limit h tends to ${0^ + }$ instead of 0.
$\mathop {\lim }\limits_{x \to {a^{{\text{ }} + }}} f\left( x \right)$ is the right-hand limit of the function $f\left( x \right)$ which is the value of $f\left( x \right)$ when $x$ tends to $a$ from the right.
$\mathop {\lim }\limits_{x \to {a^{{\text{ }} - }}} f\left( x \right)$ is the left-hand limit of the function $f\left( x \right)$ which is the value of $f\left( x \right)$ when $x$ tends to $a$ from the left.
The following are some important properties of definite integral, those will be useful in calculation definite integral more easily.
*$\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx$
*$\int\limits_a^b {f\left( x \right)} dx = - \int\limits_b^a {f\left( x \right)} dx$
*$\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^c {f\left( x \right)} dx + \int\limits_c^b {f\left( x \right)} dx$
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
