
Given that \[\dfrac{\left( 2n \right)!}{7!\left( 2n-7 \right)!}:\dfrac{n!}{4!\left( n-4 \right)!}=24:1\] then find the value of n.
Answer
585.9k+ views
Hint: Now we are given the ratio of two expressions, first consider the numerator. Now we know that $n!=n\left( n-1 \right)\left( n-2 \right).....3\times 2\times 1$, using this we will expand $\left( 2n \right)!$ such that we can cancel the denominator. Now from the even terms we will take 2 common. Now we will consider $\dfrac{n!}{4!\left( n-4 \right)!}$ . Again we will use $n!=n\left( n-1 \right)\left( n-2 \right).....3\times 2\times 1$ to expand the numerator such that the denominator gets cancelled out. Now we will divide the obtained expressions and equate it to the given ratio to find n.
Complete step by step answer:
Now first let us consider $\dfrac{\left( 2n \right)!}{7!\left( 2n-7 \right)!}$
Now we know that $n!=n\left( n-1 \right)\left( n-2 \right).....3\times 2\times 1$
Hence we can write $\left( 2n \right)!$ as
$\left( 2n \right)!=\left( 2n \right)\left( 2n-1 \right)\left( 2n-2 \right)\left( 2n-3 \right)\left( 2n-4 \right)\left( 2n-5 \right)\left( 2n-6 \right)\left( 2n-7 \right)!$
Hence using this we get
$\dfrac{\left( 2n \right)!}{7!\left( 2n-7 \right)!}=\dfrac{\left( 2n \right)\left( 2n-1 \right)\left( 2n-2 \right)\left( 2n-3 \right)\left( 2n-4 \right)\left( 2n-5 \right)\left( 2n-6 \right)\left( 2n-7 \right)!}{7!\left( 2n-7 \right)!}$
Now cancelling $\left( 2n-7 \right)!$ we get.
$=\dfrac{\left( 2n \right)\left( 2n-1 \right)\left( 2n-2 \right)\left( 2n-3 \right)\left( 2n-4 \right)\left( 2n-5 \right)\left( 2n-6 \right)}{7!}$
$=\dfrac{2\left( n \right)2\left( n-1 \right)2\left( n-2 \right)2\left( n-3 \right)\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)}{7!}$
$=\dfrac{16n\left( n-1 \right)\left( n-2 \right)\left( n-3 \right)\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)}{7!}$
Let us call this equation as equation (1)
$\dfrac{\left( 2n \right)!}{7!\left( 2n-7 \right)!}=\dfrac{16n\left( n-1 \right)\left( n-2 \right)\left( n-3 \right)\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)}{7!}............................\left( 1 \right)$
Now consider $\dfrac{n!}{4!\left( n-4 \right)!}$
Again, in the equation if will write $n!=n\left( n-1 \right)\left( n-2 \right)\left( n-3 \right)\left( n-4 \right)!$ we get
$\dfrac{n!}{4!\left( n-4 \right)!}=\dfrac{n\left( n-1 \right)\left( n-2 \right)\left( n-3 \right)\left( n-4 \right)!}{4!\left( n-4 \right)!}$
$\dfrac{n!}{4!\left( n-4 \right)!}=\dfrac{n\left( n-1 \right)\left( n-2 \right)\left( n-3 \right)}{4!}............................\left( 2 \right)$
Now from dividing equation (1) by equation (2) we get.
$\dfrac{\dfrac{\left( 2n \right)!}{7!\left( 2n-7 \right)!}}{\dfrac{n!}{4!\left( n-4 \right)!}}=\dfrac{\dfrac{16n\left( n-1 \right)\left( n-2 \right)\left( n-3 \right)\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)}{7!}}{\dfrac{n\left( n-1 \right)\left( n-2 \right)\left( n-3 \right)}{4!}}$
$=\dfrac{\dfrac{16\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)}{7\times 6\times 5\times 4!}}{\dfrac{1}{4!}}$
$=\dfrac{\dfrac{16\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)}{7\times 6\times 5}}{1}$
Now this ratio is given to be 24 : 1
Hence we get \[\dfrac{16\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)}{7\times 6\times 5}=24\]
Now dividing the above equation by 8 we get.
\[\dfrac{2\left( 2n-1 \right)\left( 2n-5 \right)\left( 2n-3 \right)}{7\times 6\times 5}=3\]
Now multiplying the equation by 7 × 6 × 5 we get
$\begin{align}
& 2\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)=7\times 6\times 5\times 3 \\
& \Rightarrow 2\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)=630 \\
\end{align}$
Now again dividing the equation by 2 we get
$\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)=315$
Now we know that $\left( 2n-1 \right),\left( 2n-3 \right)$ and $\left( 2n-5 \right)$ are nothing but odd consecutive numbers.
Hence we need to find three odd consecutive factors of 315
Now let us first check the prime factorization of 315.
$315=3\times 3\times 5\times 7$
Now by observation we can see that 5 × 7 × 9 = 315.
$\left( 2n-1 \right)$ is the smallest among $\left( 2n-1 \right),\left( 2n-3 \right)$ and $\left( 2n-5 \right)$
Hence we get $2n-1=5$
$\Rightarrow 2n=6$
Dividing the equation by 6 we get
$n=3$
Hence we have the value of n is 3.
Note: Note that in the expression the numerator is in the form of $\left( 2n \right)!$ here in factorial we cannot take 2 common as $\left( 2n \right)!\ne 2n!$ . Also in these questions when we get the final expression in n we need not form a cubic equation to solve. Just by observation we can find the value of n.
Complete step by step answer:
Now first let us consider $\dfrac{\left( 2n \right)!}{7!\left( 2n-7 \right)!}$
Now we know that $n!=n\left( n-1 \right)\left( n-2 \right).....3\times 2\times 1$
Hence we can write $\left( 2n \right)!$ as
$\left( 2n \right)!=\left( 2n \right)\left( 2n-1 \right)\left( 2n-2 \right)\left( 2n-3 \right)\left( 2n-4 \right)\left( 2n-5 \right)\left( 2n-6 \right)\left( 2n-7 \right)!$
Hence using this we get
$\dfrac{\left( 2n \right)!}{7!\left( 2n-7 \right)!}=\dfrac{\left( 2n \right)\left( 2n-1 \right)\left( 2n-2 \right)\left( 2n-3 \right)\left( 2n-4 \right)\left( 2n-5 \right)\left( 2n-6 \right)\left( 2n-7 \right)!}{7!\left( 2n-7 \right)!}$
Now cancelling $\left( 2n-7 \right)!$ we get.
$=\dfrac{\left( 2n \right)\left( 2n-1 \right)\left( 2n-2 \right)\left( 2n-3 \right)\left( 2n-4 \right)\left( 2n-5 \right)\left( 2n-6 \right)}{7!}$
$=\dfrac{2\left( n \right)2\left( n-1 \right)2\left( n-2 \right)2\left( n-3 \right)\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)}{7!}$
$=\dfrac{16n\left( n-1 \right)\left( n-2 \right)\left( n-3 \right)\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)}{7!}$
Let us call this equation as equation (1)
$\dfrac{\left( 2n \right)!}{7!\left( 2n-7 \right)!}=\dfrac{16n\left( n-1 \right)\left( n-2 \right)\left( n-3 \right)\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)}{7!}............................\left( 1 \right)$
Now consider $\dfrac{n!}{4!\left( n-4 \right)!}$
Again, in the equation if will write $n!=n\left( n-1 \right)\left( n-2 \right)\left( n-3 \right)\left( n-4 \right)!$ we get
$\dfrac{n!}{4!\left( n-4 \right)!}=\dfrac{n\left( n-1 \right)\left( n-2 \right)\left( n-3 \right)\left( n-4 \right)!}{4!\left( n-4 \right)!}$
$\dfrac{n!}{4!\left( n-4 \right)!}=\dfrac{n\left( n-1 \right)\left( n-2 \right)\left( n-3 \right)}{4!}............................\left( 2 \right)$
Now from dividing equation (1) by equation (2) we get.
$\dfrac{\dfrac{\left( 2n \right)!}{7!\left( 2n-7 \right)!}}{\dfrac{n!}{4!\left( n-4 \right)!}}=\dfrac{\dfrac{16n\left( n-1 \right)\left( n-2 \right)\left( n-3 \right)\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)}{7!}}{\dfrac{n\left( n-1 \right)\left( n-2 \right)\left( n-3 \right)}{4!}}$
$=\dfrac{\dfrac{16\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)}{7\times 6\times 5\times 4!}}{\dfrac{1}{4!}}$
$=\dfrac{\dfrac{16\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)}{7\times 6\times 5}}{1}$
Now this ratio is given to be 24 : 1
Hence we get \[\dfrac{16\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)}{7\times 6\times 5}=24\]
Now dividing the above equation by 8 we get.
\[\dfrac{2\left( 2n-1 \right)\left( 2n-5 \right)\left( 2n-3 \right)}{7\times 6\times 5}=3\]
Now multiplying the equation by 7 × 6 × 5 we get
$\begin{align}
& 2\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)=7\times 6\times 5\times 3 \\
& \Rightarrow 2\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)=630 \\
\end{align}$
Now again dividing the equation by 2 we get
$\left( 2n-1 \right)\left( 2n-3 \right)\left( 2n-5 \right)=315$
Now we know that $\left( 2n-1 \right),\left( 2n-3 \right)$ and $\left( 2n-5 \right)$ are nothing but odd consecutive numbers.
Hence we need to find three odd consecutive factors of 315
Now let us first check the prime factorization of 315.
$315=3\times 3\times 5\times 7$
Now by observation we can see that 5 × 7 × 9 = 315.
$\left( 2n-1 \right)$ is the smallest among $\left( 2n-1 \right),\left( 2n-3 \right)$ and $\left( 2n-5 \right)$
Hence we get $2n-1=5$
$\Rightarrow 2n=6$
Dividing the equation by 6 we get
$n=3$
Hence we have the value of n is 3.
Note: Note that in the expression the numerator is in the form of $\left( 2n \right)!$ here in factorial we cannot take 2 common as $\left( 2n \right)!\ne 2n!$ . Also in these questions when we get the final expression in n we need not form a cubic equation to solve. Just by observation we can find the value of n.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?

Write the 6 fundamental rights of India and explain in detail

