Given that \[\cos \dfrac{x}{2} = \dfrac{{12}}{{13}}\] and \[x\] lies in first quadrant, calculate without the use of tables, the values of \[\sin x\], \[\cos x\] and \[\tan x\]
Answer
Verified
451.2k+ views
Hint: Here, we will use a half angle formula to find the value of \[\cos x\]. Similarly, we will find the value of \[\sin x\] by using the half angle formula. Then we will find the value of \[\tan x\] by simply dividing them using the property of \[\tan x\].
Formula used:
1. \[\cos 2\theta = 2{\cos ^2}\theta - 1\]
2. \[{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1\]
3. \[\sin 2\theta = 2\sin \theta \cos \theta \]
4. \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
Complete step-by-step answer:
According to the question, \[\cos \dfrac{x}{2} = \dfrac{{12}}{{13}}\].
Now, by using the half angle formula, \[\cos 2\theta = 2{\cos ^2}\theta - 1\].
\[\cos x = 2{\cos ^2}\dfrac{x}{2} - 1\]…………………………………..\[\left( 1 \right)\]
Therefore, from equation \[\left( 1 \right)\], we get
\[\cos x = 2{\left( {\dfrac{{12}}{{13}}} \right)^2} - 1 = 2\left( {\dfrac{{144}}{{169}}} \right) - 1\]
\[ \Rightarrow \cos x = \left( {\dfrac{{288 - 169}}{{169}}} \right) = \dfrac{{119}}{{169}}\]
Therefore, the value of \[\cos x = \dfrac{{119}}{{169}}\]…………………………\[\left( 2 \right)\]
Now, we know that, \[{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1\].
\[ \Rightarrow {\sin ^2}\dfrac{x}{2} = 1 - {\cos ^2}\dfrac{x}{2}\]
But, \[\cos \dfrac{x}{2} = \dfrac{{12}}{{13}}\], hence,
\[ \Rightarrow {\sin ^2}\dfrac{x}{2} = 1 - {\left( {\dfrac{{12}}{{13}}} \right)^2} = 1 - \dfrac{{144}}{{169}}\]
\[ \Rightarrow {\sin ^2}\dfrac{x}{2} = \dfrac{{169 - 144}}{{169}} = \dfrac{{25}}{{169}}\]
Taking square root on both sides, we get
\[ \Rightarrow \sin \dfrac{x}{2} = \sqrt {\dfrac{{25}}{{169}}} = \dfrac{5}{{13}}\]
Substituting \[\sin \dfrac{x}{2} = \dfrac{5}{{13}}\] and \[\cos \dfrac{x}{2} = \dfrac{{12}}{{13}}\] in the formula \[\sin x = 2\sin \dfrac{x}{2} \times \cos \dfrac{x}{2}\], we get
\[ \Rightarrow \sin x = 2\left( {\dfrac{5}{{13}}} \right)\left( {\dfrac{{12}}{{13}}} \right)\]
Hence, solving further, we get
\[ \Rightarrow \sin x = \dfrac{{120}}{{169}}\]………………………………\[\left( 3 \right)\]
Therefore, the value of \[\sin x = \dfrac{{120}}{{169}}\]
Now, we know that \[\tan x = \dfrac{{\sin x}}{{\cos x}}\].
Hence, from equation \[\left( 2 \right)\]and \[\left( 3 \right)\], we get
\[\tan x = \dfrac{{\dfrac{{120}}{{169}}}}{{\dfrac{{119}}{{169}}}} = \dfrac{{120}}{{119}}\]
Therefore, without the use of tables, we have calculated the values of \[\sin x\], \[\cos x\] and \[\tan x\]as \[\dfrac{{120}}{{169}}\],\[\dfrac{{119}}{{169}}\]and \[\dfrac{{120}}{{119}}\] respectively.
This is the required answer.
Note: We know that we can apply the trigonometric identities in a right angled triangle whose:
Hypotenuse\[ = H\], Perpendicular side \[ = P\]and the Base \[ = B\].
Hence, an alternate way to solve this question is:
We will first find the value of \[\cos x\] in the same way as before.
Hence, by using half angle formula, and from \[\left( 1 \right)\]and \[\left( 2 \right)\], we will get:
\[\cos x = \dfrac{{119}}{{169}}\]
Now, instead of using formulas further, we will use the right angle formulas.
As we know, in a right angled triangle, \[\cos x = \dfrac{B}{H} = \dfrac{{119}}{{169}}\]
Also, since, \[\cos x = \dfrac{B}{H} = \dfrac{{119}}{{169}}\]
Hence, substituting \[B = 119\]and \[H = 169\] in the formula \[{H^2} = {P^2} + {B^2}\], we get
\[ \Rightarrow {\left( {169} \right)^2} - {\left( {119} \right)^2} = {P^2}\]
Using the property \[\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)\], we get
\[ \Rightarrow {P^2} = \left( {169 + 119} \right)\left( {169 - 119} \right)\]
\[ \Rightarrow {P^2} = 288 \times 50 = 14400\]
Taking square root on both side, we get
\[ \Rightarrow P = \sqrt {14400} = 120\]
Therefore, \[\sin x = \dfrac{P}{H} = \dfrac{{120}}{{169}}\]
And, \[\tan x = \dfrac{P}{B} = \dfrac{{120}}{{119}}\]
Therefore, without the use of tables, we have calculated the values of \[\sin x\], \[\cos x\] and \[\tan x\] as \[\dfrac{{120}}{{169}}\],\[\dfrac{{119}}{{169}}\] and \[\dfrac{{120}}{{119}}\] respectively.
Formula used:
1. \[\cos 2\theta = 2{\cos ^2}\theta - 1\]
2. \[{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1\]
3. \[\sin 2\theta = 2\sin \theta \cos \theta \]
4. \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
Complete step-by-step answer:
According to the question, \[\cos \dfrac{x}{2} = \dfrac{{12}}{{13}}\].
Now, by using the half angle formula, \[\cos 2\theta = 2{\cos ^2}\theta - 1\].
\[\cos x = 2{\cos ^2}\dfrac{x}{2} - 1\]…………………………………..\[\left( 1 \right)\]
Therefore, from equation \[\left( 1 \right)\], we get
\[\cos x = 2{\left( {\dfrac{{12}}{{13}}} \right)^2} - 1 = 2\left( {\dfrac{{144}}{{169}}} \right) - 1\]
\[ \Rightarrow \cos x = \left( {\dfrac{{288 - 169}}{{169}}} \right) = \dfrac{{119}}{{169}}\]
Therefore, the value of \[\cos x = \dfrac{{119}}{{169}}\]…………………………\[\left( 2 \right)\]
Now, we know that, \[{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1\].
\[ \Rightarrow {\sin ^2}\dfrac{x}{2} = 1 - {\cos ^2}\dfrac{x}{2}\]
But, \[\cos \dfrac{x}{2} = \dfrac{{12}}{{13}}\], hence,
\[ \Rightarrow {\sin ^2}\dfrac{x}{2} = 1 - {\left( {\dfrac{{12}}{{13}}} \right)^2} = 1 - \dfrac{{144}}{{169}}\]
\[ \Rightarrow {\sin ^2}\dfrac{x}{2} = \dfrac{{169 - 144}}{{169}} = \dfrac{{25}}{{169}}\]
Taking square root on both sides, we get
\[ \Rightarrow \sin \dfrac{x}{2} = \sqrt {\dfrac{{25}}{{169}}} = \dfrac{5}{{13}}\]
Substituting \[\sin \dfrac{x}{2} = \dfrac{5}{{13}}\] and \[\cos \dfrac{x}{2} = \dfrac{{12}}{{13}}\] in the formula \[\sin x = 2\sin \dfrac{x}{2} \times \cos \dfrac{x}{2}\], we get
\[ \Rightarrow \sin x = 2\left( {\dfrac{5}{{13}}} \right)\left( {\dfrac{{12}}{{13}}} \right)\]
Hence, solving further, we get
\[ \Rightarrow \sin x = \dfrac{{120}}{{169}}\]………………………………\[\left( 3 \right)\]
Therefore, the value of \[\sin x = \dfrac{{120}}{{169}}\]
Now, we know that \[\tan x = \dfrac{{\sin x}}{{\cos x}}\].
Hence, from equation \[\left( 2 \right)\]and \[\left( 3 \right)\], we get
\[\tan x = \dfrac{{\dfrac{{120}}{{169}}}}{{\dfrac{{119}}{{169}}}} = \dfrac{{120}}{{119}}\]
Therefore, without the use of tables, we have calculated the values of \[\sin x\], \[\cos x\] and \[\tan x\]as \[\dfrac{{120}}{{169}}\],\[\dfrac{{119}}{{169}}\]and \[\dfrac{{120}}{{119}}\] respectively.
This is the required answer.
Note: We know that we can apply the trigonometric identities in a right angled triangle whose:
Hypotenuse\[ = H\], Perpendicular side \[ = P\]and the Base \[ = B\].
Hence, an alternate way to solve this question is:
We will first find the value of \[\cos x\] in the same way as before.
Hence, by using half angle formula, and from \[\left( 1 \right)\]and \[\left( 2 \right)\], we will get:
\[\cos x = \dfrac{{119}}{{169}}\]
Now, instead of using formulas further, we will use the right angle formulas.
As we know, in a right angled triangle, \[\cos x = \dfrac{B}{H} = \dfrac{{119}}{{169}}\]
Also, since, \[\cos x = \dfrac{B}{H} = \dfrac{{119}}{{169}}\]
Hence, substituting \[B = 119\]and \[H = 169\] in the formula \[{H^2} = {P^2} + {B^2}\], we get
\[ \Rightarrow {\left( {169} \right)^2} - {\left( {119} \right)^2} = {P^2}\]
Using the property \[\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)\], we get
\[ \Rightarrow {P^2} = \left( {169 + 119} \right)\left( {169 - 119} \right)\]
\[ \Rightarrow {P^2} = 288 \times 50 = 14400\]
Taking square root on both side, we get
\[ \Rightarrow P = \sqrt {14400} = 120\]
Therefore, \[\sin x = \dfrac{P}{H} = \dfrac{{120}}{{169}}\]
And, \[\tan x = \dfrac{P}{B} = \dfrac{{120}}{{119}}\]
Therefore, without the use of tables, we have calculated the values of \[\sin x\], \[\cos x\] and \[\tan x\] as \[\dfrac{{120}}{{169}}\],\[\dfrac{{119}}{{169}}\] and \[\dfrac{{120}}{{119}}\] respectively.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Chemistry: Engaging Questions & Answers for Success
Master Class 11 Biology: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE