
Given that both x and y are positive integers. Solve the following systems of equations.
\[{{x}^{2}}+xy=15\]
\[{{y}^{2}}+xy=10\]
Answer
582.6k+ views
Hint: To solve the given question, we will first add both the equations given in the question. After adding these two equations, we will get the value of (x + y). Then, we will take x common from the left-hand side of the first equation and cross multiply x. Then we will square this equation obtained and put the value of x + y from the previous equation into this equation. From this equation, we will get the value of x. Then we will put this value of x in the second equation which will give us a quadratic equation in y. Then, we will solve this quadratic equation by using the quadratic formula. The positive value of y will be the required answer.
Complete step-by-step answer:
To start with, we are given the following two equations:
\[{{x}^{2}}+xy=15.......\left( i \right)\]
\[{{y}^{2}}+xy=10.........\left( ii \right)\]
Now, we will add both these equations. Thus, we will get,
\[\Rightarrow {{x}^{2}}+xy+{{y}^{2}}+xy=15+10\]
\[\Rightarrow {{x}^{2}}+2xy+{{y}^{2}}=25\]
Now, here, we will use the identity \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}.\] Thus, we will get,
\[\Rightarrow {{\left( x+y \right)}^{2}}=25......\left( iii \right)\]
Now, from equation (i), we have,
\[{{x}^{2}}+xy=15\]
Taking x common from the above equation, we will get,
\[\Rightarrow x\left( x+y \right)=15\]
Now, we will cross multiply x. Thus, we will get,
\[\Rightarrow \left( x+y \right)=\dfrac{15}{x}\]
Now, we will square both sides of the equation. Thus, we will get,
\[\Rightarrow {{\left( x+y \right)}^{2}}={{\left( \dfrac{15}{x} \right)}^{2}}........\left( iv \right)\]
From (iii) and (iv), we will get,
\[\Rightarrow 25={{\left( \dfrac{15}{x} \right)}^{2}}\]
Taking square root on both the sides, we will get,
\[\Rightarrow \sqrt{25}=\sqrt{{{\left( \dfrac{15}{x} \right)}^{2}}}\]
\[\Rightarrow 5=\dfrac{15}{x}\]
\[\Rightarrow x=3......\left( v \right)\]
Now, we will put the value of x = 3 in (ii). Thus, we will get,
\[{{y}^{2}}+3y=10\]
\[\Rightarrow {{y}^{2}}+3y-10=0\]
Now, we will solve this quadratic equation in y using the quadratic formula. If there is a quadratic equation of the form \[a{{x}^{2}}+bx+c=0\] then its roots are given by \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}.\]
Thus, we can say that,
\[y=\dfrac{-3\pm \sqrt{{{\left( 3 \right)}^{2}}-4\left( 1 \right)\left( -10 \right)}}{2\left( 1 \right)}\]
\[\Rightarrow y=\dfrac{-3\pm \sqrt{9+40}}{2}\]
\[\Rightarrow y=\dfrac{-3\pm \sqrt{49}}{2}\]
\[\Rightarrow y=\dfrac{-3\pm 7}{2}\]
\[y=\dfrac{-3+7}{2}\text{ or }y=\dfrac{-3-7}{2}\]
\[\Rightarrow y=\dfrac{4}{2}\text{ or }y=\dfrac{-10}{2}\]
\[\Rightarrow y=2\text{ or }y=-5\]
Now, y is positive, so y = 2. Thus, the value of x is 3 and y is 2.
Note: The alternate way of solving the question is shown below. From (i), we have,
\[{{x}^{2}}+xy=15\]
\[\Rightarrow x\left( x+y \right)=15\]
\[\Rightarrow x+y=\dfrac{15}{x}\]
\[\Rightarrow y=\dfrac{15}{x}-x\]
\[\Rightarrow y=\dfrac{15-{{x}^{2}}}{x}\]
Now, we will put this value of y in (ii). This, we will get,
\[{{\left( \dfrac{15-{{x}^{2}}}{x} \right)}^{2}}+x\left( \dfrac{15-{{x}^{2}}}{x} \right)=10\]
\[\Rightarrow \dfrac{225+{{x}^{4}}-30{{x}^{2}}}{{{x}^{2}}}+15-{{x}^{2}}=10\]
\[\Rightarrow \dfrac{225+{{x}^{4}}-30{{x}^{2}}}{{{x}^{2}}}={{x}^{2}}-5\]
\[\Rightarrow 225+{{x}^{4}}-30{{x}^{2}}={{x}^{2}}\left( {{x}^{2}}-5 \right)\]
\[\Rightarrow 225+{{x}^{4}}-30{{x}^{2}}={{x}^{4}}-5{{x}^{2}}\]
\[\Rightarrow 225-30{{x}^{2}}=-5{{x}^{2}}\]
\[\Rightarrow 225=25{{x}^{2}}\]
\[\Rightarrow {{x}^{2}}=9\]
\[\Rightarrow x=3\]
On putting this value of x in (i), we will get,
\[\Rightarrow {{\left( 3 \right)}^{2}}+3\left( y \right)=15\]
\[\Rightarrow 3y+9=15\]
\[\Rightarrow 3y=6\]
\[\Rightarrow y=2\]
Complete step-by-step answer:
To start with, we are given the following two equations:
\[{{x}^{2}}+xy=15.......\left( i \right)\]
\[{{y}^{2}}+xy=10.........\left( ii \right)\]
Now, we will add both these equations. Thus, we will get,
\[\Rightarrow {{x}^{2}}+xy+{{y}^{2}}+xy=15+10\]
\[\Rightarrow {{x}^{2}}+2xy+{{y}^{2}}=25\]
Now, here, we will use the identity \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}.\] Thus, we will get,
\[\Rightarrow {{\left( x+y \right)}^{2}}=25......\left( iii \right)\]
Now, from equation (i), we have,
\[{{x}^{2}}+xy=15\]
Taking x common from the above equation, we will get,
\[\Rightarrow x\left( x+y \right)=15\]
Now, we will cross multiply x. Thus, we will get,
\[\Rightarrow \left( x+y \right)=\dfrac{15}{x}\]
Now, we will square both sides of the equation. Thus, we will get,
\[\Rightarrow {{\left( x+y \right)}^{2}}={{\left( \dfrac{15}{x} \right)}^{2}}........\left( iv \right)\]
From (iii) and (iv), we will get,
\[\Rightarrow 25={{\left( \dfrac{15}{x} \right)}^{2}}\]
Taking square root on both the sides, we will get,
\[\Rightarrow \sqrt{25}=\sqrt{{{\left( \dfrac{15}{x} \right)}^{2}}}\]
\[\Rightarrow 5=\dfrac{15}{x}\]
\[\Rightarrow x=3......\left( v \right)\]
Now, we will put the value of x = 3 in (ii). Thus, we will get,
\[{{y}^{2}}+3y=10\]
\[\Rightarrow {{y}^{2}}+3y-10=0\]
Now, we will solve this quadratic equation in y using the quadratic formula. If there is a quadratic equation of the form \[a{{x}^{2}}+bx+c=0\] then its roots are given by \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}.\]
Thus, we can say that,
\[y=\dfrac{-3\pm \sqrt{{{\left( 3 \right)}^{2}}-4\left( 1 \right)\left( -10 \right)}}{2\left( 1 \right)}\]
\[\Rightarrow y=\dfrac{-3\pm \sqrt{9+40}}{2}\]
\[\Rightarrow y=\dfrac{-3\pm \sqrt{49}}{2}\]
\[\Rightarrow y=\dfrac{-3\pm 7}{2}\]
\[y=\dfrac{-3+7}{2}\text{ or }y=\dfrac{-3-7}{2}\]
\[\Rightarrow y=\dfrac{4}{2}\text{ or }y=\dfrac{-10}{2}\]
\[\Rightarrow y=2\text{ or }y=-5\]
Now, y is positive, so y = 2. Thus, the value of x is 3 and y is 2.
Note: The alternate way of solving the question is shown below. From (i), we have,
\[{{x}^{2}}+xy=15\]
\[\Rightarrow x\left( x+y \right)=15\]
\[\Rightarrow x+y=\dfrac{15}{x}\]
\[\Rightarrow y=\dfrac{15}{x}-x\]
\[\Rightarrow y=\dfrac{15-{{x}^{2}}}{x}\]
Now, we will put this value of y in (ii). This, we will get,
\[{{\left( \dfrac{15-{{x}^{2}}}{x} \right)}^{2}}+x\left( \dfrac{15-{{x}^{2}}}{x} \right)=10\]
\[\Rightarrow \dfrac{225+{{x}^{4}}-30{{x}^{2}}}{{{x}^{2}}}+15-{{x}^{2}}=10\]
\[\Rightarrow \dfrac{225+{{x}^{4}}-30{{x}^{2}}}{{{x}^{2}}}={{x}^{2}}-5\]
\[\Rightarrow 225+{{x}^{4}}-30{{x}^{2}}={{x}^{2}}\left( {{x}^{2}}-5 \right)\]
\[\Rightarrow 225+{{x}^{4}}-30{{x}^{2}}={{x}^{4}}-5{{x}^{2}}\]
\[\Rightarrow 225-30{{x}^{2}}=-5{{x}^{2}}\]
\[\Rightarrow 225=25{{x}^{2}}\]
\[\Rightarrow {{x}^{2}}=9\]
\[\Rightarrow x=3\]
On putting this value of x in (i), we will get,
\[\Rightarrow {{\left( 3 \right)}^{2}}+3\left( y \right)=15\]
\[\Rightarrow 3y+9=15\]
\[\Rightarrow 3y=6\]
\[\Rightarrow y=2\]
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

