
Given that both x and y are positive integers. Solve the following systems of equations.
\[{{x}^{2}}+xy=15\]
\[{{y}^{2}}+xy=10\]
Answer
596.7k+ views
Hint: To solve the given question, we will first add both the equations given in the question. After adding these two equations, we will get the value of (x + y). Then, we will take x common from the left-hand side of the first equation and cross multiply x. Then we will square this equation obtained and put the value of x + y from the previous equation into this equation. From this equation, we will get the value of x. Then we will put this value of x in the second equation which will give us a quadratic equation in y. Then, we will solve this quadratic equation by using the quadratic formula. The positive value of y will be the required answer.
Complete step-by-step answer:
To start with, we are given the following two equations:
\[{{x}^{2}}+xy=15.......\left( i \right)\]
\[{{y}^{2}}+xy=10.........\left( ii \right)\]
Now, we will add both these equations. Thus, we will get,
\[\Rightarrow {{x}^{2}}+xy+{{y}^{2}}+xy=15+10\]
\[\Rightarrow {{x}^{2}}+2xy+{{y}^{2}}=25\]
Now, here, we will use the identity \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}.\] Thus, we will get,
\[\Rightarrow {{\left( x+y \right)}^{2}}=25......\left( iii \right)\]
Now, from equation (i), we have,
\[{{x}^{2}}+xy=15\]
Taking x common from the above equation, we will get,
\[\Rightarrow x\left( x+y \right)=15\]
Now, we will cross multiply x. Thus, we will get,
\[\Rightarrow \left( x+y \right)=\dfrac{15}{x}\]
Now, we will square both sides of the equation. Thus, we will get,
\[\Rightarrow {{\left( x+y \right)}^{2}}={{\left( \dfrac{15}{x} \right)}^{2}}........\left( iv \right)\]
From (iii) and (iv), we will get,
\[\Rightarrow 25={{\left( \dfrac{15}{x} \right)}^{2}}\]
Taking square root on both the sides, we will get,
\[\Rightarrow \sqrt{25}=\sqrt{{{\left( \dfrac{15}{x} \right)}^{2}}}\]
\[\Rightarrow 5=\dfrac{15}{x}\]
\[\Rightarrow x=3......\left( v \right)\]
Now, we will put the value of x = 3 in (ii). Thus, we will get,
\[{{y}^{2}}+3y=10\]
\[\Rightarrow {{y}^{2}}+3y-10=0\]
Now, we will solve this quadratic equation in y using the quadratic formula. If there is a quadratic equation of the form \[a{{x}^{2}}+bx+c=0\] then its roots are given by \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}.\]
Thus, we can say that,
\[y=\dfrac{-3\pm \sqrt{{{\left( 3 \right)}^{2}}-4\left( 1 \right)\left( -10 \right)}}{2\left( 1 \right)}\]
\[\Rightarrow y=\dfrac{-3\pm \sqrt{9+40}}{2}\]
\[\Rightarrow y=\dfrac{-3\pm \sqrt{49}}{2}\]
\[\Rightarrow y=\dfrac{-3\pm 7}{2}\]
\[y=\dfrac{-3+7}{2}\text{ or }y=\dfrac{-3-7}{2}\]
\[\Rightarrow y=\dfrac{4}{2}\text{ or }y=\dfrac{-10}{2}\]
\[\Rightarrow y=2\text{ or }y=-5\]
Now, y is positive, so y = 2. Thus, the value of x is 3 and y is 2.
Note: The alternate way of solving the question is shown below. From (i), we have,
\[{{x}^{2}}+xy=15\]
\[\Rightarrow x\left( x+y \right)=15\]
\[\Rightarrow x+y=\dfrac{15}{x}\]
\[\Rightarrow y=\dfrac{15}{x}-x\]
\[\Rightarrow y=\dfrac{15-{{x}^{2}}}{x}\]
Now, we will put this value of y in (ii). This, we will get,
\[{{\left( \dfrac{15-{{x}^{2}}}{x} \right)}^{2}}+x\left( \dfrac{15-{{x}^{2}}}{x} \right)=10\]
\[\Rightarrow \dfrac{225+{{x}^{4}}-30{{x}^{2}}}{{{x}^{2}}}+15-{{x}^{2}}=10\]
\[\Rightarrow \dfrac{225+{{x}^{4}}-30{{x}^{2}}}{{{x}^{2}}}={{x}^{2}}-5\]
\[\Rightarrow 225+{{x}^{4}}-30{{x}^{2}}={{x}^{2}}\left( {{x}^{2}}-5 \right)\]
\[\Rightarrow 225+{{x}^{4}}-30{{x}^{2}}={{x}^{4}}-5{{x}^{2}}\]
\[\Rightarrow 225-30{{x}^{2}}=-5{{x}^{2}}\]
\[\Rightarrow 225=25{{x}^{2}}\]
\[\Rightarrow {{x}^{2}}=9\]
\[\Rightarrow x=3\]
On putting this value of x in (i), we will get,
\[\Rightarrow {{\left( 3 \right)}^{2}}+3\left( y \right)=15\]
\[\Rightarrow 3y+9=15\]
\[\Rightarrow 3y=6\]
\[\Rightarrow y=2\]
Complete step-by-step answer:
To start with, we are given the following two equations:
\[{{x}^{2}}+xy=15.......\left( i \right)\]
\[{{y}^{2}}+xy=10.........\left( ii \right)\]
Now, we will add both these equations. Thus, we will get,
\[\Rightarrow {{x}^{2}}+xy+{{y}^{2}}+xy=15+10\]
\[\Rightarrow {{x}^{2}}+2xy+{{y}^{2}}=25\]
Now, here, we will use the identity \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}.\] Thus, we will get,
\[\Rightarrow {{\left( x+y \right)}^{2}}=25......\left( iii \right)\]
Now, from equation (i), we have,
\[{{x}^{2}}+xy=15\]
Taking x common from the above equation, we will get,
\[\Rightarrow x\left( x+y \right)=15\]
Now, we will cross multiply x. Thus, we will get,
\[\Rightarrow \left( x+y \right)=\dfrac{15}{x}\]
Now, we will square both sides of the equation. Thus, we will get,
\[\Rightarrow {{\left( x+y \right)}^{2}}={{\left( \dfrac{15}{x} \right)}^{2}}........\left( iv \right)\]
From (iii) and (iv), we will get,
\[\Rightarrow 25={{\left( \dfrac{15}{x} \right)}^{2}}\]
Taking square root on both the sides, we will get,
\[\Rightarrow \sqrt{25}=\sqrt{{{\left( \dfrac{15}{x} \right)}^{2}}}\]
\[\Rightarrow 5=\dfrac{15}{x}\]
\[\Rightarrow x=3......\left( v \right)\]
Now, we will put the value of x = 3 in (ii). Thus, we will get,
\[{{y}^{2}}+3y=10\]
\[\Rightarrow {{y}^{2}}+3y-10=0\]
Now, we will solve this quadratic equation in y using the quadratic formula. If there is a quadratic equation of the form \[a{{x}^{2}}+bx+c=0\] then its roots are given by \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}.\]
Thus, we can say that,
\[y=\dfrac{-3\pm \sqrt{{{\left( 3 \right)}^{2}}-4\left( 1 \right)\left( -10 \right)}}{2\left( 1 \right)}\]
\[\Rightarrow y=\dfrac{-3\pm \sqrt{9+40}}{2}\]
\[\Rightarrow y=\dfrac{-3\pm \sqrt{49}}{2}\]
\[\Rightarrow y=\dfrac{-3\pm 7}{2}\]
\[y=\dfrac{-3+7}{2}\text{ or }y=\dfrac{-3-7}{2}\]
\[\Rightarrow y=\dfrac{4}{2}\text{ or }y=\dfrac{-10}{2}\]
\[\Rightarrow y=2\text{ or }y=-5\]
Now, y is positive, so y = 2. Thus, the value of x is 3 and y is 2.
Note: The alternate way of solving the question is shown below. From (i), we have,
\[{{x}^{2}}+xy=15\]
\[\Rightarrow x\left( x+y \right)=15\]
\[\Rightarrow x+y=\dfrac{15}{x}\]
\[\Rightarrow y=\dfrac{15}{x}-x\]
\[\Rightarrow y=\dfrac{15-{{x}^{2}}}{x}\]
Now, we will put this value of y in (ii). This, we will get,
\[{{\left( \dfrac{15-{{x}^{2}}}{x} \right)}^{2}}+x\left( \dfrac{15-{{x}^{2}}}{x} \right)=10\]
\[\Rightarrow \dfrac{225+{{x}^{4}}-30{{x}^{2}}}{{{x}^{2}}}+15-{{x}^{2}}=10\]
\[\Rightarrow \dfrac{225+{{x}^{4}}-30{{x}^{2}}}{{{x}^{2}}}={{x}^{2}}-5\]
\[\Rightarrow 225+{{x}^{4}}-30{{x}^{2}}={{x}^{2}}\left( {{x}^{2}}-5 \right)\]
\[\Rightarrow 225+{{x}^{4}}-30{{x}^{2}}={{x}^{4}}-5{{x}^{2}}\]
\[\Rightarrow 225-30{{x}^{2}}=-5{{x}^{2}}\]
\[\Rightarrow 225=25{{x}^{2}}\]
\[\Rightarrow {{x}^{2}}=9\]
\[\Rightarrow x=3\]
On putting this value of x in (i), we will get,
\[\Rightarrow {{\left( 3 \right)}^{2}}+3\left( y \right)=15\]
\[\Rightarrow 3y+9=15\]
\[\Rightarrow 3y=6\]
\[\Rightarrow y=2\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

