
Given, ${{\text{K}}_{\text{a}}}$ for butyric acid is $\text{2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-5}}}$. Calculate \[\text{pH}\] and hydroxyl ion concentration of $\text{0}\text{.2M}$ aqueous solution of sodium butyrate.
Answer
554.7k+ views
Hint: Salt hydrolysis is the process in which water reacts with cation and anion or both of a salt to change the concentration of ${{\text{H}}^{\text{+}}}$ and $\text{O}{{\text{H}}^{\text{-}}}$ ions of water.
Sodium butyrate is a weak acid and strong base type of salt.
Complete answer:
The calculation of $\text{pH}$ and hydroxyl ion takes place in four steps which are following –
In first step we will calculate the ${{\text{K}}_{\text{H}}}(\text{hydrolysis}\,\text{constant)}$
\[\begin{align}
& {{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{CO}{{\text{O}}^{\text{-}}}\text{N}{{\text{a}}^{\text{+}}}\,\text{+}\,{{\text{H}}_{\text{2}}}\text{O}\,\,\rightleftharpoons \,{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{COOH}\,\,\text{+}\,\,\text{NaOH} \\
& {{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{CO}{{\text{O}}^{\text{-}}}\,+\,\,{{\text{H}}_{\text{2}}}\text{O}\,\,\rightleftharpoons \,{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{COOH}\,\text{+}\,\text{O}{{\text{H}}^{\text{-}}} \\
& {{\text{K}}_{\text{h}}}=\,\frac{[\,{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{COOH}\,][\text{O}{{\text{H}}^{\text{-}}}]}{[{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{CO}{{\text{O}}^{\text{-}}}\,]}.......(i)\,\,\,\text{ }\!\!\{\!\!\text{ From}\,\text{law}\,\text{of}\,\text{mass}\,\text{action }\!\!\}\!\!\text{ } \\
& \text{For}\,\text{weak}\,\text{acid} \\
& {{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{COOH}\rightleftharpoons {{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{CO}{{\text{O}}^{\text{-}}}\,+{{\text{H}}^{\text{+}}} \\
& {{\text{K}}_{\text{a}}}=\,\frac{[{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{CO}{{\text{O}}^{\text{-}}}\,][{{\text{H}}^{\text{+}}}]}{[{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{COOH}]}......(ii) \\
& \text{For}\,\text{water} \\
& {{\text{H}}_{\text{2}}}\text{O}\rightleftharpoons \,\,{{\text{H}}^{\text{+}}}\,+\text{O}{{\text{H}}^{\text{-}}} \\
& {{\text{K}}_{\text{w}}}=\,[{{\text{H}}^{\text{+}}}][\text{O}{{\text{H}}^{\text{-}}}]...........(iii) \\
\end{align}\]
From e.q (i), (ii) and (iii) we get
${{\text{K}}_{\text{h}}}\text{=}\frac{{{\text{K}}_{\text{w}}}}{{{\text{K}}_{\text{a}}}}......(iv)$
In second step we will calculate degree of hydrolysis (h)
\[\begin{align}
& {{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{CO}{{\text{O}}^{\text{-}}}\,+\,\,{{\text{H}}_{\text{2}}}\text{O}\,\,\rightleftharpoons \,{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{COOH}\,\text{+}\,\text{O}{{\text{H}}^{\text{-}}} \\
& \,\,\,\,\,\,\,\,\,\begin{matrix}
\text{C}\,\, \\
\text{C(1-h)}\,\, \\
\end{matrix}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\begin{matrix}
0 & 0 \\
\text{Ch}\, & \text{Ch}\, \\
\end{matrix}\{\text{at}\,\text{initial}\,\text{concentration }\!\!\}\!\!\text{ } \\
& \,\,{{\text{K}}_{\text{h}}}=\,\frac{[{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{COOH}\,\text{ }\!\!]\!\!\text{ }\!\![\!\!\text{ O}{{\text{H}}^{-}}]}{[{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{CO}{{\text{O}}^{-}}]} \\
& \text{ }{{\text{K}}_{\text{h}}}\text{= C}{{\text{h}}^{\text{2}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ }\!\!\{\!\!\text{ at}\,\text{infinite}\,\text{dilution }\!\!\}\!\!\text{ } \\
& \,\,\,\,\,\,\text{h}\,\text{=}\,\sqrt{\frac{{{\text{K}}_{\text{h}}}}{\text{C}}}\,......\text{(v)}\,\,\,\,\, \\
& \text{so,}\,\text{after}\,\text{putting}\,\text{the}\,\text{value}\,\text{of}\,{{\text{K}}_{\text{h}}}\,\text{from}\,\text{equation}\,\text{(iv)} \\
& \,\,\,\,\,\,\,\text{h}\,\text{=}\,\sqrt{\frac{{{\text{K}}_{\text{h}}}}{\text{C}}}=\,\sqrt{\frac{{{\text{K}}_{\text{w}}}}{{{\text{K}}_{\text{a}}}\text{C}}}.....(\text{vi}) \\
\end{align}\]
In the third step after putting the given value of ${{\text{K}}_{\text{a}}}$= $\text{2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-5}}}$ and $\text{C}$=$\text{0}\text{.2M}$ in e.q (VI) we get the value of hydroxyl ion concentration
\[\begin{align}
& \text{ }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}\text{ }\!\!]\!\!\text{ }\,=\,Ch\,=\,C\times \sqrt{\frac{{{K}_{w}}}{{{K}_{a}}\times \,C}} \\
& \text{or }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}\text{ }\!\!]\!\!\text{ }\,=\,\sqrt{\frac{{{K}_{w}}\times \,C}{{{K}_{a}}}} \\
& \,\text{ }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}\text{ }\!\!]\!\!\text{ }\,=\,\sqrt{\frac{{{10}^{-14}}\times \,0.2}{2\times {{10}^{-5}}}} \\
& =\,\sqrt{\frac{2\times {{10}^{-15}}}{2\times {{10}^{-5}}}} \\
& \text{ }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}\text{ }\!\!]\!\!\text{ }\,=\,{{10}^{-5}}
\end{align}\]
In fourth step we will calculate the value of $\text{pH}$ by calculating the value of $\text{pOH}$
\[\begin{align}
& \text{pOH =}\,\text{-log }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}\text{ }\!\!]\!\!\text{ } \\
& \text{pOH}\,=-\log [{{10}^{-5}}] \\
& \text{pOH}\,=\,\,5 \\
\end{align}\]
So, $\text{pH}$ of the solution will be
\[\begin{align}
& \text{pH}\,\,\text{+}\,\,\text{pOH}\,\,\text{=}\,\,\text{p}{{\text{K}}_{\text{w}}} \\
& \text{pH}\,\,\text{+}\,\,\text{pOH =}\,\text{14} \\
& \text{pH}\,\,\text{=}\,\,\text{14-}\,\text{5} \\
& \text{pH}\,\,\text{=}\,\,\text{9} \\
\end{align}\]
Note:
Hydrolysis is the reverse process of neutralization.
-In this type of salt hydrolysis anionic part of the salt reacts with water therefore this reaction is also known as anionic hydrolysis. Finally the solution is basic in nature because of the increase in concentration of hydroxyl ions. So the final $\text{pH}$ of the solution will be more than seven.
Maximum hydrolysis occurs when the salt consists of weak acid and weak base. In this case both cation and anion both are reactive, so the solution is almost neutral but can be acidic and basic depending on the nature of acid and base.
Sodium butyrate is a weak acid and strong base type of salt.
Complete answer:
The calculation of $\text{pH}$ and hydroxyl ion takes place in four steps which are following –
In first step we will calculate the ${{\text{K}}_{\text{H}}}(\text{hydrolysis}\,\text{constant)}$
\[\begin{align}
& {{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{CO}{{\text{O}}^{\text{-}}}\text{N}{{\text{a}}^{\text{+}}}\,\text{+}\,{{\text{H}}_{\text{2}}}\text{O}\,\,\rightleftharpoons \,{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{COOH}\,\,\text{+}\,\,\text{NaOH} \\
& {{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{CO}{{\text{O}}^{\text{-}}}\,+\,\,{{\text{H}}_{\text{2}}}\text{O}\,\,\rightleftharpoons \,{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{COOH}\,\text{+}\,\text{O}{{\text{H}}^{\text{-}}} \\
& {{\text{K}}_{\text{h}}}=\,\frac{[\,{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{COOH}\,][\text{O}{{\text{H}}^{\text{-}}}]}{[{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{CO}{{\text{O}}^{\text{-}}}\,]}.......(i)\,\,\,\text{ }\!\!\{\!\!\text{ From}\,\text{law}\,\text{of}\,\text{mass}\,\text{action }\!\!\}\!\!\text{ } \\
& \text{For}\,\text{weak}\,\text{acid} \\
& {{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{COOH}\rightleftharpoons {{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{CO}{{\text{O}}^{\text{-}}}\,+{{\text{H}}^{\text{+}}} \\
& {{\text{K}}_{\text{a}}}=\,\frac{[{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{CO}{{\text{O}}^{\text{-}}}\,][{{\text{H}}^{\text{+}}}]}{[{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{COOH}]}......(ii) \\
& \text{For}\,\text{water} \\
& {{\text{H}}_{\text{2}}}\text{O}\rightleftharpoons \,\,{{\text{H}}^{\text{+}}}\,+\text{O}{{\text{H}}^{\text{-}}} \\
& {{\text{K}}_{\text{w}}}=\,[{{\text{H}}^{\text{+}}}][\text{O}{{\text{H}}^{\text{-}}}]...........(iii) \\
\end{align}\]
From e.q (i), (ii) and (iii) we get
${{\text{K}}_{\text{h}}}\text{=}\frac{{{\text{K}}_{\text{w}}}}{{{\text{K}}_{\text{a}}}}......(iv)$
In second step we will calculate degree of hydrolysis (h)
\[\begin{align}
& {{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{CO}{{\text{O}}^{\text{-}}}\,+\,\,{{\text{H}}_{\text{2}}}\text{O}\,\,\rightleftharpoons \,{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{COOH}\,\text{+}\,\text{O}{{\text{H}}^{\text{-}}} \\
& \,\,\,\,\,\,\,\,\,\begin{matrix}
\text{C}\,\, \\
\text{C(1-h)}\,\, \\
\end{matrix}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\begin{matrix}
0 & 0 \\
\text{Ch}\, & \text{Ch}\, \\
\end{matrix}\{\text{at}\,\text{initial}\,\text{concentration }\!\!\}\!\!\text{ } \\
& \,\,{{\text{K}}_{\text{h}}}=\,\frac{[{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{COOH}\,\text{ }\!\!]\!\!\text{ }\!\![\!\!\text{ O}{{\text{H}}^{-}}]}{[{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}\text{CO}{{\text{O}}^{-}}]} \\
& \text{ }{{\text{K}}_{\text{h}}}\text{= C}{{\text{h}}^{\text{2}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{ }\!\!\{\!\!\text{ at}\,\text{infinite}\,\text{dilution }\!\!\}\!\!\text{ } \\
& \,\,\,\,\,\,\text{h}\,\text{=}\,\sqrt{\frac{{{\text{K}}_{\text{h}}}}{\text{C}}}\,......\text{(v)}\,\,\,\,\, \\
& \text{so,}\,\text{after}\,\text{putting}\,\text{the}\,\text{value}\,\text{of}\,{{\text{K}}_{\text{h}}}\,\text{from}\,\text{equation}\,\text{(iv)} \\
& \,\,\,\,\,\,\,\text{h}\,\text{=}\,\sqrt{\frac{{{\text{K}}_{\text{h}}}}{\text{C}}}=\,\sqrt{\frac{{{\text{K}}_{\text{w}}}}{{{\text{K}}_{\text{a}}}\text{C}}}.....(\text{vi}) \\
\end{align}\]
In the third step after putting the given value of ${{\text{K}}_{\text{a}}}$= $\text{2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-5}}}$ and $\text{C}$=$\text{0}\text{.2M}$ in e.q (VI) we get the value of hydroxyl ion concentration
\[\begin{align}
& \text{ }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}\text{ }\!\!]\!\!\text{ }\,=\,Ch\,=\,C\times \sqrt{\frac{{{K}_{w}}}{{{K}_{a}}\times \,C}} \\
& \text{or }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}\text{ }\!\!]\!\!\text{ }\,=\,\sqrt{\frac{{{K}_{w}}\times \,C}{{{K}_{a}}}} \\
& \,\text{ }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}\text{ }\!\!]\!\!\text{ }\,=\,\sqrt{\frac{{{10}^{-14}}\times \,0.2}{2\times {{10}^{-5}}}} \\
& =\,\sqrt{\frac{2\times {{10}^{-15}}}{2\times {{10}^{-5}}}} \\
& \text{ }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}\text{ }\!\!]\!\!\text{ }\,=\,{{10}^{-5}}
\end{align}\]
In fourth step we will calculate the value of $\text{pH}$ by calculating the value of $\text{pOH}$
\[\begin{align}
& \text{pOH =}\,\text{-log }\!\![\!\!\text{ O}{{\text{H}}^{\text{-}}}\text{ }\!\!]\!\!\text{ } \\
& \text{pOH}\,=-\log [{{10}^{-5}}] \\
& \text{pOH}\,=\,\,5 \\
\end{align}\]
So, $\text{pH}$ of the solution will be
\[\begin{align}
& \text{pH}\,\,\text{+}\,\,\text{pOH}\,\,\text{=}\,\,\text{p}{{\text{K}}_{\text{w}}} \\
& \text{pH}\,\,\text{+}\,\,\text{pOH =}\,\text{14} \\
& \text{pH}\,\,\text{=}\,\,\text{14-}\,\text{5} \\
& \text{pH}\,\,\text{=}\,\,\text{9} \\
\end{align}\]
Note:
Hydrolysis is the reverse process of neutralization.
-In this type of salt hydrolysis anionic part of the salt reacts with water therefore this reaction is also known as anionic hydrolysis. Finally the solution is basic in nature because of the increase in concentration of hydroxyl ions. So the final $\text{pH}$ of the solution will be more than seven.
Maximum hydrolysis occurs when the salt consists of weak acid and weak base. In this case both cation and anion both are reactive, so the solution is almost neutral but can be acidic and basic depending on the nature of acid and base.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

