
Given if \[\sin y=x\sin \left( a+y \right)\], prove the result $\dfrac{dy}{dx}=\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin a}$.
Answer
512.7k+ views
Hint: We start solving the problem by finding the value of from the given equation of the problem \[\sin y=x\sin \left( a+y \right)\]. We use the $\dfrac{u}{v}$ rule of differentiation to differentiate x with respect to y. We use the results of differentiation and the result of $\sin \left( A-B \right)$, to get the value of $\dfrac{dx}{dy}$. Now, we take the inverse to get the required result.
Complete step by step answer:
Given that we have \[\sin y=x\sin \left( a+y \right)\] and we need to prove the result $\dfrac{dy}{dx}=\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin a}$.
We have got the value \[\sin y=x\sin \left( a+y \right)\].
We have got the value \[x=\dfrac{\sin y}{\sin \left( a+y \right)}\].
Let us differentiate this equation on both sides.
We have got the value $\dfrac{dx}{dy}=\dfrac{d}{dy}\left( \dfrac{\sin y}{\sin \left( a+y \right)} \right)$ ---(1).
We know that differentiation of a function $\dfrac{u}{v}$ is defined as $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}$. We use this result in equation (1).
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \dfrac{d}{dy}\left( \sin y \right) \right)-\left( \sin y\times \dfrac{d}{dy}\left( \sin \left( a+y \right) \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$ ---(2).
We know that $\dfrac{d}{dx}\left( \sin x \right)=\cos x$ and $\dfrac{d}{dx}\left( \sin \left( f\left( x \right) \right) \right)=\cos \left( f\left( x \right) \right)\times \dfrac{d}{dx}\left( f\left( x \right) \right)$. We use this result in equation (2).
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \cos y \right)-\left( \sin y\times \left( \cos \left( a+y \right)\times \dfrac{d\left( a+y \right)}{dy} \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$.
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \cos y \right)-\left( \sin y\times \left( \cos \left( a+y \right)\times 1 \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$.
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \cos y \right)-\left( \sin y\times \cos \left( a+y \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$ ---(3).
We know that $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$. We use this result in equation (3).
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\sin \left( a+y-y \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$.
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\sin \left( a \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$ ---(4).
We know that if $\dfrac{dy}{dx}=a$, then $\dfrac{dx}{dy}=\dfrac{1}{a}$. We use this result in equation (4).
We have got the value $\dfrac{dy}{dx}=\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin \left( a \right)}$.
We have found the value of $\dfrac{dy}{dx}$ as $\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin \left( a \right)}$.
∴ We have proved the result $\dfrac{dy}{dx}=\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin \left( a \right)}$.
Note: We should not make mistakes while differentiating using $\dfrac{u}{v}$ rule. We should not forget that we can use inverse after differentiation also. Because sometimes finding $\dfrac{dy}{dx}$ directly will be tough when compared to finding $\dfrac{dx}{dy}$.
Complete step by step answer:
Given that we have \[\sin y=x\sin \left( a+y \right)\] and we need to prove the result $\dfrac{dy}{dx}=\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin a}$.
We have got the value \[\sin y=x\sin \left( a+y \right)\].
We have got the value \[x=\dfrac{\sin y}{\sin \left( a+y \right)}\].
Let us differentiate this equation on both sides.
We have got the value $\dfrac{dx}{dy}=\dfrac{d}{dy}\left( \dfrac{\sin y}{\sin \left( a+y \right)} \right)$ ---(1).
We know that differentiation of a function $\dfrac{u}{v}$ is defined as $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}$. We use this result in equation (1).
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \dfrac{d}{dy}\left( \sin y \right) \right)-\left( \sin y\times \dfrac{d}{dy}\left( \sin \left( a+y \right) \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$ ---(2).
We know that $\dfrac{d}{dx}\left( \sin x \right)=\cos x$ and $\dfrac{d}{dx}\left( \sin \left( f\left( x \right) \right) \right)=\cos \left( f\left( x \right) \right)\times \dfrac{d}{dx}\left( f\left( x \right) \right)$. We use this result in equation (2).
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \cos y \right)-\left( \sin y\times \left( \cos \left( a+y \right)\times \dfrac{d\left( a+y \right)}{dy} \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$.
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \cos y \right)-\left( \sin y\times \left( \cos \left( a+y \right)\times 1 \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$.
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \cos y \right)-\left( \sin y\times \cos \left( a+y \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$ ---(3).
We know that $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$. We use this result in equation (3).
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\sin \left( a+y-y \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$.
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\sin \left( a \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$ ---(4).
We know that if $\dfrac{dy}{dx}=a$, then $\dfrac{dx}{dy}=\dfrac{1}{a}$. We use this result in equation (4).
We have got the value $\dfrac{dy}{dx}=\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin \left( a \right)}$.
We have found the value of $\dfrac{dy}{dx}$ as $\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin \left( a \right)}$.
∴ We have proved the result $\dfrac{dy}{dx}=\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin \left( a \right)}$.
Note: We should not make mistakes while differentiating using $\dfrac{u}{v}$ rule. We should not forget that we can use inverse after differentiation also. Because sometimes finding $\dfrac{dy}{dx}$ directly will be tough when compared to finding $\dfrac{dx}{dy}$.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
