
Given if \[\sin y=x\sin \left( a+y \right)\], prove the result $\dfrac{dy}{dx}=\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin a}$.
Answer
591.6k+ views
Hint: We start solving the problem by finding the value of from the given equation of the problem \[\sin y=x\sin \left( a+y \right)\]. We use the $\dfrac{u}{v}$ rule of differentiation to differentiate x with respect to y. We use the results of differentiation and the result of $\sin \left( A-B \right)$, to get the value of $\dfrac{dx}{dy}$. Now, we take the inverse to get the required result.
Complete step by step answer:
Given that we have \[\sin y=x\sin \left( a+y \right)\] and we need to prove the result $\dfrac{dy}{dx}=\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin a}$.
We have got the value \[\sin y=x\sin \left( a+y \right)\].
We have got the value \[x=\dfrac{\sin y}{\sin \left( a+y \right)}\].
Let us differentiate this equation on both sides.
We have got the value $\dfrac{dx}{dy}=\dfrac{d}{dy}\left( \dfrac{\sin y}{\sin \left( a+y \right)} \right)$ ---(1).
We know that differentiation of a function $\dfrac{u}{v}$ is defined as $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}$. We use this result in equation (1).
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \dfrac{d}{dy}\left( \sin y \right) \right)-\left( \sin y\times \dfrac{d}{dy}\left( \sin \left( a+y \right) \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$ ---(2).
We know that $\dfrac{d}{dx}\left( \sin x \right)=\cos x$ and $\dfrac{d}{dx}\left( \sin \left( f\left( x \right) \right) \right)=\cos \left( f\left( x \right) \right)\times \dfrac{d}{dx}\left( f\left( x \right) \right)$. We use this result in equation (2).
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \cos y \right)-\left( \sin y\times \left( \cos \left( a+y \right)\times \dfrac{d\left( a+y \right)}{dy} \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$.
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \cos y \right)-\left( \sin y\times \left( \cos \left( a+y \right)\times 1 \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$.
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \cos y \right)-\left( \sin y\times \cos \left( a+y \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$ ---(3).
We know that $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$. We use this result in equation (3).
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\sin \left( a+y-y \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$.
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\sin \left( a \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$ ---(4).
We know that if $\dfrac{dy}{dx}=a$, then $\dfrac{dx}{dy}=\dfrac{1}{a}$. We use this result in equation (4).
We have got the value $\dfrac{dy}{dx}=\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin \left( a \right)}$.
We have found the value of $\dfrac{dy}{dx}$ as $\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin \left( a \right)}$.
∴ We have proved the result $\dfrac{dy}{dx}=\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin \left( a \right)}$.
Note: We should not make mistakes while differentiating using $\dfrac{u}{v}$ rule. We should not forget that we can use inverse after differentiation also. Because sometimes finding $\dfrac{dy}{dx}$ directly will be tough when compared to finding $\dfrac{dx}{dy}$.
Complete step by step answer:
Given that we have \[\sin y=x\sin \left( a+y \right)\] and we need to prove the result $\dfrac{dy}{dx}=\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin a}$.
We have got the value \[\sin y=x\sin \left( a+y \right)\].
We have got the value \[x=\dfrac{\sin y}{\sin \left( a+y \right)}\].
Let us differentiate this equation on both sides.
We have got the value $\dfrac{dx}{dy}=\dfrac{d}{dy}\left( \dfrac{\sin y}{\sin \left( a+y \right)} \right)$ ---(1).
We know that differentiation of a function $\dfrac{u}{v}$ is defined as $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}$. We use this result in equation (1).
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \dfrac{d}{dy}\left( \sin y \right) \right)-\left( \sin y\times \dfrac{d}{dy}\left( \sin \left( a+y \right) \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$ ---(2).
We know that $\dfrac{d}{dx}\left( \sin x \right)=\cos x$ and $\dfrac{d}{dx}\left( \sin \left( f\left( x \right) \right) \right)=\cos \left( f\left( x \right) \right)\times \dfrac{d}{dx}\left( f\left( x \right) \right)$. We use this result in equation (2).
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \cos y \right)-\left( \sin y\times \left( \cos \left( a+y \right)\times \dfrac{d\left( a+y \right)}{dy} \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$.
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \cos y \right)-\left( \sin y\times \left( \cos \left( a+y \right)\times 1 \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$.
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\left( \sin \left( a+y \right)\times \cos y \right)-\left( \sin y\times \cos \left( a+y \right) \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$ ---(3).
We know that $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$. We use this result in equation (3).
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\sin \left( a+y-y \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$.
We have got the value $\dfrac{dx}{dy}=\left( \dfrac{\sin \left( a \right)}{{{\sin }^{2}}\left( a+y \right)} \right)$ ---(4).
We know that if $\dfrac{dy}{dx}=a$, then $\dfrac{dx}{dy}=\dfrac{1}{a}$. We use this result in equation (4).
We have got the value $\dfrac{dy}{dx}=\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin \left( a \right)}$.
We have found the value of $\dfrac{dy}{dx}$ as $\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin \left( a \right)}$.
∴ We have proved the result $\dfrac{dy}{dx}=\dfrac{{{\sin }^{2}}\left( a+y \right)}{\sin \left( a \right)}$.
Note: We should not make mistakes while differentiating using $\dfrac{u}{v}$ rule. We should not forget that we can use inverse after differentiation also. Because sometimes finding $\dfrac{dy}{dx}$ directly will be tough when compared to finding $\dfrac{dx}{dy}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

