
Given if ${{\left( \cos x \right)}^{y}}={{\left( \cos y \right)}^{x}}$, then find the value of $\dfrac{dy}{dx}$?
Answer
577.5k+ views
Hint: We start solving the problem by applying logarithms to the given function ${{\left( \cos x \right)}^{y}}={{\left( \cos y \right)}^{x}}$. We differentiate after applying the logarithms using the uv rule of differentiation. We differentiate and make adjustments to get the coefficients of $\dfrac{dy}{dx}$ on one side. We make necessary calculations to get the required result.
Complete step by step answer:
Given that we have ${{\left( \cos x \right)}^{y}}={{\left( \cos y \right)}^{x}}$. We need to find the value of $\dfrac{dy}{dx}$.
We have got the value ${{\left( \cos x \right)}^{y}}={{\left( \cos y \right)}^{x}}$ ---(1).
Applying log on both sides in equation (1).
We have got the value ${{\log }_{e}}{{\left( \cos x \right)}^{y}}={{\log }_{e}}{{\left( \cos y \right)}^{x}}$ ---(2).
We know that ${{\log }_{a}}\left( {{x}^{y}} \right)=y{{\log }_{a}}\left( x \right)$. We use this result in equation (2).
We have got the value $y.{{\log }_{e}}\left( \cos x \right)=x.{{\log }_{e}}\left( \cos y \right)$.
We apply differentiation with respect to x on both sides.
We have got the value $\dfrac{d}{dx}\left( y.{{\log }_{e}}\left( \cos x \right) \right)=\dfrac{d}{dx}\left( x.{{\log }_{e}}\left( \cos y \right) \right)$ ---(3).
We know that the differentiation of the function uv is defined as $\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$. We use this result in equation (3).
We have got the value $y.\dfrac{d{{\log }_{e}}\left( \cos x \right)}{dx}+\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)=x.\dfrac{d{{\log }_{e}}\left( \cos y \right)}{dx}+\dfrac{dx}{dx}.{{\log }_{e}}\left( \cos y \right)$ ---(4).
We know that $\dfrac{d\left( \log \left( f\left( x \right) \right) \right)}{dx}=\dfrac{1}{f\left( x \right)}.\dfrac{d\left( f\left( x \right) \right)}{dx}$, and $\dfrac{dx}{dx}=1$. We use this results in equation (4).
We have got the value $y.\dfrac{1}{\cos x}.\dfrac{d\left( \cos x \right)}{dx}+\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)=x.\dfrac{1}{\cos y}.\dfrac{d\left( \cos y \right)}{dx}+1.{{\log }_{e}}\left( \cos y \right)$ ---(5).
We know that $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$ and $\dfrac{d\left( \cos \left( f\left( x \right) \right) \right)}{dx}=-\sin \left( f\left( x \right) \right).\dfrac{d\left( f\left( x \right) \right)}{dx}$. We use this results in (5).
We have got the value $y.\dfrac{1}{\cos x}.\left( -\sin x \right)+\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)=x.\dfrac{1}{\cos y}.\left( -\sin y.\dfrac{dy}{dx} \right)+1.{{\log }_{e}}\left( \cos y \right)$.
We have got the value $\dfrac{-y\sin x}{\cos x}+\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)=\dfrac{-x\sin y}{\cos y}.\left( \dfrac{dy}{dx} \right)+{{\log }_{e}}\left( \cos y \right)$.
We have got the value $\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)+\dfrac{x\sin y}{\cos y}.\left( \dfrac{dy}{dx} \right)=\dfrac{y\sin x}{\cos x}+{{\log }_{e}}\left( \cos y \right)$ ---(6).
We know that $\dfrac{\sin x}{\cos x}=\tan x$. We use this result in equation (6).
We have got the value $\dfrac{dy}{dx}\times \left( {{\log }_{e}}\left( \cos x \right)+x\tan y \right)=y\tan x+{{\log }_{e}}\left( \cos y \right)$.
We have got the value $\dfrac{dy}{dx}=\dfrac{y\tan x+{{\log }_{e}}\left( \cos y \right)}{{{\log }_{e}}\left( \cos x \right)+x\tan y}$.
We have got the value $\dfrac{dy}{dx}=\dfrac{y\tan x+{{\log }_{e}}\left( \cos y \right)}{x\tan y+{{\log }_{e}}\left( \cos x \right)}$.
We have found the value for $\dfrac{dy}{dx}$ as $\dfrac{y\tan x+{{\log }_{e}}\left( \cos y \right)}{x\tan y+{{\log }_{e}}\left( \cos x \right)}$.
∴ The result for $\dfrac{dy}{dx}$ is $\dfrac{y\tan x+{{\log }_{e}}\left( \cos y \right)}{x\tan y+{{\log }_{e}}\left( \cos x \right)}$.
Note: Whenever we have problems containing functions which cannot be disintegrated to single variables, we apply logarithm on both sides. We should not make any sign mistakes while making the differentiation. Similarly, we get the problems to solve the problem by having powers as trigonometric functions.
Complete step by step answer:
Given that we have ${{\left( \cos x \right)}^{y}}={{\left( \cos y \right)}^{x}}$. We need to find the value of $\dfrac{dy}{dx}$.
We have got the value ${{\left( \cos x \right)}^{y}}={{\left( \cos y \right)}^{x}}$ ---(1).
Applying log on both sides in equation (1).
We have got the value ${{\log }_{e}}{{\left( \cos x \right)}^{y}}={{\log }_{e}}{{\left( \cos y \right)}^{x}}$ ---(2).
We know that ${{\log }_{a}}\left( {{x}^{y}} \right)=y{{\log }_{a}}\left( x \right)$. We use this result in equation (2).
We have got the value $y.{{\log }_{e}}\left( \cos x \right)=x.{{\log }_{e}}\left( \cos y \right)$.
We apply differentiation with respect to x on both sides.
We have got the value $\dfrac{d}{dx}\left( y.{{\log }_{e}}\left( \cos x \right) \right)=\dfrac{d}{dx}\left( x.{{\log }_{e}}\left( \cos y \right) \right)$ ---(3).
We know that the differentiation of the function uv is defined as $\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$. We use this result in equation (3).
We have got the value $y.\dfrac{d{{\log }_{e}}\left( \cos x \right)}{dx}+\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)=x.\dfrac{d{{\log }_{e}}\left( \cos y \right)}{dx}+\dfrac{dx}{dx}.{{\log }_{e}}\left( \cos y \right)$ ---(4).
We know that $\dfrac{d\left( \log \left( f\left( x \right) \right) \right)}{dx}=\dfrac{1}{f\left( x \right)}.\dfrac{d\left( f\left( x \right) \right)}{dx}$, and $\dfrac{dx}{dx}=1$. We use this results in equation (4).
We have got the value $y.\dfrac{1}{\cos x}.\dfrac{d\left( \cos x \right)}{dx}+\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)=x.\dfrac{1}{\cos y}.\dfrac{d\left( \cos y \right)}{dx}+1.{{\log }_{e}}\left( \cos y \right)$ ---(5).
We know that $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$ and $\dfrac{d\left( \cos \left( f\left( x \right) \right) \right)}{dx}=-\sin \left( f\left( x \right) \right).\dfrac{d\left( f\left( x \right) \right)}{dx}$. We use this results in (5).
We have got the value $y.\dfrac{1}{\cos x}.\left( -\sin x \right)+\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)=x.\dfrac{1}{\cos y}.\left( -\sin y.\dfrac{dy}{dx} \right)+1.{{\log }_{e}}\left( \cos y \right)$.
We have got the value $\dfrac{-y\sin x}{\cos x}+\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)=\dfrac{-x\sin y}{\cos y}.\left( \dfrac{dy}{dx} \right)+{{\log }_{e}}\left( \cos y \right)$.
We have got the value $\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)+\dfrac{x\sin y}{\cos y}.\left( \dfrac{dy}{dx} \right)=\dfrac{y\sin x}{\cos x}+{{\log }_{e}}\left( \cos y \right)$ ---(6).
We know that $\dfrac{\sin x}{\cos x}=\tan x$. We use this result in equation (6).
We have got the value $\dfrac{dy}{dx}\times \left( {{\log }_{e}}\left( \cos x \right)+x\tan y \right)=y\tan x+{{\log }_{e}}\left( \cos y \right)$.
We have got the value $\dfrac{dy}{dx}=\dfrac{y\tan x+{{\log }_{e}}\left( \cos y \right)}{{{\log }_{e}}\left( \cos x \right)+x\tan y}$.
We have got the value $\dfrac{dy}{dx}=\dfrac{y\tan x+{{\log }_{e}}\left( \cos y \right)}{x\tan y+{{\log }_{e}}\left( \cos x \right)}$.
We have found the value for $\dfrac{dy}{dx}$ as $\dfrac{y\tan x+{{\log }_{e}}\left( \cos y \right)}{x\tan y+{{\log }_{e}}\left( \cos x \right)}$.
∴ The result for $\dfrac{dy}{dx}$ is $\dfrac{y\tan x+{{\log }_{e}}\left( \cos y \right)}{x\tan y+{{\log }_{e}}\left( \cos x \right)}$.
Note: Whenever we have problems containing functions which cannot be disintegrated to single variables, we apply logarithm on both sides. We should not make any sign mistakes while making the differentiation. Similarly, we get the problems to solve the problem by having powers as trigonometric functions.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

