
Given if ${{\left( \cos x \right)}^{y}}={{\left( \cos y \right)}^{x}}$, then find the value of $\dfrac{dy}{dx}$?
Answer
591.9k+ views
Hint: We start solving the problem by applying logarithms to the given function ${{\left( \cos x \right)}^{y}}={{\left( \cos y \right)}^{x}}$. We differentiate after applying the logarithms using the uv rule of differentiation. We differentiate and make adjustments to get the coefficients of $\dfrac{dy}{dx}$ on one side. We make necessary calculations to get the required result.
Complete step by step answer:
Given that we have ${{\left( \cos x \right)}^{y}}={{\left( \cos y \right)}^{x}}$. We need to find the value of $\dfrac{dy}{dx}$.
We have got the value ${{\left( \cos x \right)}^{y}}={{\left( \cos y \right)}^{x}}$ ---(1).
Applying log on both sides in equation (1).
We have got the value ${{\log }_{e}}{{\left( \cos x \right)}^{y}}={{\log }_{e}}{{\left( \cos y \right)}^{x}}$ ---(2).
We know that ${{\log }_{a}}\left( {{x}^{y}} \right)=y{{\log }_{a}}\left( x \right)$. We use this result in equation (2).
We have got the value $y.{{\log }_{e}}\left( \cos x \right)=x.{{\log }_{e}}\left( \cos y \right)$.
We apply differentiation with respect to x on both sides.
We have got the value $\dfrac{d}{dx}\left( y.{{\log }_{e}}\left( \cos x \right) \right)=\dfrac{d}{dx}\left( x.{{\log }_{e}}\left( \cos y \right) \right)$ ---(3).
We know that the differentiation of the function uv is defined as $\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$. We use this result in equation (3).
We have got the value $y.\dfrac{d{{\log }_{e}}\left( \cos x \right)}{dx}+\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)=x.\dfrac{d{{\log }_{e}}\left( \cos y \right)}{dx}+\dfrac{dx}{dx}.{{\log }_{e}}\left( \cos y \right)$ ---(4).
We know that $\dfrac{d\left( \log \left( f\left( x \right) \right) \right)}{dx}=\dfrac{1}{f\left( x \right)}.\dfrac{d\left( f\left( x \right) \right)}{dx}$, and $\dfrac{dx}{dx}=1$. We use this results in equation (4).
We have got the value $y.\dfrac{1}{\cos x}.\dfrac{d\left( \cos x \right)}{dx}+\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)=x.\dfrac{1}{\cos y}.\dfrac{d\left( \cos y \right)}{dx}+1.{{\log }_{e}}\left( \cos y \right)$ ---(5).
We know that $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$ and $\dfrac{d\left( \cos \left( f\left( x \right) \right) \right)}{dx}=-\sin \left( f\left( x \right) \right).\dfrac{d\left( f\left( x \right) \right)}{dx}$. We use this results in (5).
We have got the value $y.\dfrac{1}{\cos x}.\left( -\sin x \right)+\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)=x.\dfrac{1}{\cos y}.\left( -\sin y.\dfrac{dy}{dx} \right)+1.{{\log }_{e}}\left( \cos y \right)$.
We have got the value $\dfrac{-y\sin x}{\cos x}+\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)=\dfrac{-x\sin y}{\cos y}.\left( \dfrac{dy}{dx} \right)+{{\log }_{e}}\left( \cos y \right)$.
We have got the value $\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)+\dfrac{x\sin y}{\cos y}.\left( \dfrac{dy}{dx} \right)=\dfrac{y\sin x}{\cos x}+{{\log }_{e}}\left( \cos y \right)$ ---(6).
We know that $\dfrac{\sin x}{\cos x}=\tan x$. We use this result in equation (6).
We have got the value $\dfrac{dy}{dx}\times \left( {{\log }_{e}}\left( \cos x \right)+x\tan y \right)=y\tan x+{{\log }_{e}}\left( \cos y \right)$.
We have got the value $\dfrac{dy}{dx}=\dfrac{y\tan x+{{\log }_{e}}\left( \cos y \right)}{{{\log }_{e}}\left( \cos x \right)+x\tan y}$.
We have got the value $\dfrac{dy}{dx}=\dfrac{y\tan x+{{\log }_{e}}\left( \cos y \right)}{x\tan y+{{\log }_{e}}\left( \cos x \right)}$.
We have found the value for $\dfrac{dy}{dx}$ as $\dfrac{y\tan x+{{\log }_{e}}\left( \cos y \right)}{x\tan y+{{\log }_{e}}\left( \cos x \right)}$.
∴ The result for $\dfrac{dy}{dx}$ is $\dfrac{y\tan x+{{\log }_{e}}\left( \cos y \right)}{x\tan y+{{\log }_{e}}\left( \cos x \right)}$.
Note: Whenever we have problems containing functions which cannot be disintegrated to single variables, we apply logarithm on both sides. We should not make any sign mistakes while making the differentiation. Similarly, we get the problems to solve the problem by having powers as trigonometric functions.
Complete step by step answer:
Given that we have ${{\left( \cos x \right)}^{y}}={{\left( \cos y \right)}^{x}}$. We need to find the value of $\dfrac{dy}{dx}$.
We have got the value ${{\left( \cos x \right)}^{y}}={{\left( \cos y \right)}^{x}}$ ---(1).
Applying log on both sides in equation (1).
We have got the value ${{\log }_{e}}{{\left( \cos x \right)}^{y}}={{\log }_{e}}{{\left( \cos y \right)}^{x}}$ ---(2).
We know that ${{\log }_{a}}\left( {{x}^{y}} \right)=y{{\log }_{a}}\left( x \right)$. We use this result in equation (2).
We have got the value $y.{{\log }_{e}}\left( \cos x \right)=x.{{\log }_{e}}\left( \cos y \right)$.
We apply differentiation with respect to x on both sides.
We have got the value $\dfrac{d}{dx}\left( y.{{\log }_{e}}\left( \cos x \right) \right)=\dfrac{d}{dx}\left( x.{{\log }_{e}}\left( \cos y \right) \right)$ ---(3).
We know that the differentiation of the function uv is defined as $\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$. We use this result in equation (3).
We have got the value $y.\dfrac{d{{\log }_{e}}\left( \cos x \right)}{dx}+\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)=x.\dfrac{d{{\log }_{e}}\left( \cos y \right)}{dx}+\dfrac{dx}{dx}.{{\log }_{e}}\left( \cos y \right)$ ---(4).
We know that $\dfrac{d\left( \log \left( f\left( x \right) \right) \right)}{dx}=\dfrac{1}{f\left( x \right)}.\dfrac{d\left( f\left( x \right) \right)}{dx}$, and $\dfrac{dx}{dx}=1$. We use this results in equation (4).
We have got the value $y.\dfrac{1}{\cos x}.\dfrac{d\left( \cos x \right)}{dx}+\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)=x.\dfrac{1}{\cos y}.\dfrac{d\left( \cos y \right)}{dx}+1.{{\log }_{e}}\left( \cos y \right)$ ---(5).
We know that $\dfrac{d}{dx}\left( \cos x \right)=-\sin x$ and $\dfrac{d\left( \cos \left( f\left( x \right) \right) \right)}{dx}=-\sin \left( f\left( x \right) \right).\dfrac{d\left( f\left( x \right) \right)}{dx}$. We use this results in (5).
We have got the value $y.\dfrac{1}{\cos x}.\left( -\sin x \right)+\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)=x.\dfrac{1}{\cos y}.\left( -\sin y.\dfrac{dy}{dx} \right)+1.{{\log }_{e}}\left( \cos y \right)$.
We have got the value $\dfrac{-y\sin x}{\cos x}+\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)=\dfrac{-x\sin y}{\cos y}.\left( \dfrac{dy}{dx} \right)+{{\log }_{e}}\left( \cos y \right)$.
We have got the value $\dfrac{dy}{dx}.{{\log }_{e}}\left( \cos x \right)+\dfrac{x\sin y}{\cos y}.\left( \dfrac{dy}{dx} \right)=\dfrac{y\sin x}{\cos x}+{{\log }_{e}}\left( \cos y \right)$ ---(6).
We know that $\dfrac{\sin x}{\cos x}=\tan x$. We use this result in equation (6).
We have got the value $\dfrac{dy}{dx}\times \left( {{\log }_{e}}\left( \cos x \right)+x\tan y \right)=y\tan x+{{\log }_{e}}\left( \cos y \right)$.
We have got the value $\dfrac{dy}{dx}=\dfrac{y\tan x+{{\log }_{e}}\left( \cos y \right)}{{{\log }_{e}}\left( \cos x \right)+x\tan y}$.
We have got the value $\dfrac{dy}{dx}=\dfrac{y\tan x+{{\log }_{e}}\left( \cos y \right)}{x\tan y+{{\log }_{e}}\left( \cos x \right)}$.
We have found the value for $\dfrac{dy}{dx}$ as $\dfrac{y\tan x+{{\log }_{e}}\left( \cos y \right)}{x\tan y+{{\log }_{e}}\left( \cos x \right)}$.
∴ The result for $\dfrac{dy}{dx}$ is $\dfrac{y\tan x+{{\log }_{e}}\left( \cos y \right)}{x\tan y+{{\log }_{e}}\left( \cos x \right)}$.
Note: Whenever we have problems containing functions which cannot be disintegrated to single variables, we apply logarithm on both sides. We should not make any sign mistakes while making the differentiation. Similarly, we get the problems to solve the problem by having powers as trigonometric functions.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

