
Given \[\dfrac{{b + c}}{{11}} = \dfrac{{c + a}}{{12}} = \dfrac{{a + b}}{{13}}\] for \[\Delta ABC\] with usual notation. If \[\dfrac{{cosA}}{\alpha } = \dfrac{{\cos B}}{\beta } = \dfrac{{\cos C}}{\gamma }\], then what will be values for ordered triad \[(\alpha, \beta, \gamma)\] ?
(a) (3, 4, 5)
(b) (19, 7, 25)
(c) (7, 19, 25)
(d) (5, 12, 13)
Answer
589.2k+ views
Hint: To derive the values of \[\alpha ,\beta ,\gamma \], we have to calculate values of a, b and c. We will get these values by equating given equations with any constant. After that we can use following cosine formulas for Angles A, B and C to get values of \[\cos A,\cos B{\text{ and }}\cos C\].
\[\begin{array}{l}
\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\\
\cos B = \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\\
\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}
\end{array}\]
Complete step-by-step solution:
By comparing given equation of cosine with calculated cosines equations, we will get values of \[\alpha ,\beta {\rm{ and }}\alpha \].
\[\begin{array}{l}
{\text{Let’s consider }}\dfrac{{b + c}}{{11}} = \dfrac{{c + a}}{{12}} = \dfrac{{a + b}}{{13}} = \lambda (say)\\
b + c = 11\lambda {\rm{ }}...{\rm{(i)}}\\
c + a = 12\lambda {\rm{ }}...{\rm{(ii)}}\\
a + b = 13\lambda {\rm{ }}...{\rm{(iii)}}
\end{array}\]
By adding Eqs. (i), (ii) and (iii), we get
\[\begin{array}{l}
b + c + a + c + a + b = 11\lambda + 12\lambda + 13\lambda \\
\Rightarrow 2a + 2b + 2c = 36\lambda \\
\Rightarrow 2(a + b + c) = 36\lambda \\
\Rightarrow a + b + c = 18\lambda {\rm{ }}...{\rm{(i)}}
\end{array}\]
Now, we will find values of a in terms of \[\lambda \]
Subtracting Eq.(i) from Eq.(iv), we get
\[\begin{array}{l}
a + b + c - b - c = 18\lambda - 11\lambda \\
\Rightarrow a = 7\lambda
\end{array}\]
Now, we will find values of b in terms of \[\lambda \]
Subtracting Eq.(ii) from Eq.(iv), we get
\[\begin{array}{l}
a + b + c - a - c = 18\lambda - 12\lambda \\
\Rightarrow b = 6\lambda
\end{array}\]
Now, we will find values of c in terms of \[\lambda \]
Subtracting Eq.(iii) from Eq.(iv), we get
\[\begin{array}{l}
a + b + c - a - b = 18\lambda - 13\lambda \\
\Rightarrow c = 5\lambda
\end{array}\]
Now, we get \[a = 7\lambda ,b = 6\lambda {\text{ and }}c = 5\lambda \]
To derive values of \[\cos A,\cos B{\text{ and }}\cos C\], we can use cosine formulas.
Firstly, we will derive value of \[\cos A\]
\[\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
Now, we can put values of a, b and c in this equation.
\[ = \dfrac{{{{(6\lambda )}^2} + {{(5\lambda )}^2} - {{(7\lambda )}^2}}}{{2 \times 6\lambda \times 7\lambda }}\]
This equation can be written as,
\[ = \dfrac{{36{\lambda ^2} + 25{\lambda ^2} - 49{\lambda ^2}}}{{60{\lambda ^2}}}\]
Now, we can solve this equation to get value of \[\cos A\].
\[\begin{array}{l}
= \dfrac{{61{\lambda ^2} - 49{\lambda ^2}}}{{60{\lambda ^2}}}\\
= \dfrac{{12{\lambda ^2}}}{{60{\lambda ^2}}}\\
= \dfrac{1}{5}
\end{array}\]
Now, we will find value of \[\cos B \]
\[\cos B = \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\]
Now, we can put values of a, b, and c in this equation.
\[ = \dfrac{{{{(7\lambda )}^2} + {{(5\lambda )}^2} - {{(6\lambda )}^2}}}{{2 \times 7\lambda \times 5\lambda }}\]
This equation can be written as,
\[ = \dfrac{{49{\lambda ^2} + 25{\lambda ^2} - 36{\lambda ^2}}}{{70{\lambda ^2}}}\]
Now, we can solve this equation to get value of \[\cos B\].
\[\begin{array}{l}
= \dfrac{{74{\lambda ^2} - 36{\lambda ^2}}}{{70{\lambda ^2}}}\\
= \dfrac{{38{\lambda ^2}}}{{70{\lambda ^2}}}\\
= \dfrac{{19}}{{35}}
\end{array}\]
Now, we will find value of \[\cos C\]
\[\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\]
Now, we can put values of a, b, and c in this equation.
\[ = \dfrac{{{{(7\lambda )}^2} + {{(6\lambda )}^2} - {{(5\lambda )}^2}}}{{2 \times 7\lambda \times 6\lambda }}\]
This equation can be written as,
\[ = \dfrac{{49{\lambda ^2} + 36{\lambda ^2} - 25{\lambda ^2}}}{{84{\lambda ^2}}}\]
Now, we can solve this equation to get value of \[\cos B\].
\[\begin{array}{l}
= \dfrac{{85{\lambda ^2} - 25{\lambda ^2}}}{{84{\lambda ^2}}}\\
= \dfrac{{60{\lambda ^2}}}{{84{\lambda ^2}}}\\
= \dfrac{5}{7}
\end{array}\]
We can rewrite these equations in ratio form as
\[\begin{array}{l}
\cos A:\cos B:\cos C = \dfrac{1}{5}:\dfrac{{19}}{{35}}:\dfrac{5}{7}\\
\therefore \dfrac{{\cos A}}{7}:\dfrac{{\cos B}}{{19}}:\dfrac{{\cos C}}{{25}}{\rm{ }}...{\rm{(v)}}
\end{array}\]
But, given equation is
\[\dfrac{{cosA}}{\alpha } = \dfrac{{\cos B}}{\beta } = \dfrac{{\cos C}}{\gamma }{\rm{ }}...{\rm{(vi)}}\]
By comparing Eqs. (v) and (vi), we get
\[ \Rightarrow \alpha = 7,\beta = 19,\gamma = 25\]
Hence, the option (c) is correct.
Note: Calculation plays an important role in these types of trigonometric problems. Students get confused when to use cosine rules between \[\cos A, \cos B\text{ }and\text { }\cos C \]. One can do mistake like \[\cos B = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\] instead of \[\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\].
\[\begin{array}{l}
\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\\
\cos B = \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\\
\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}
\end{array}\]
Complete step-by-step solution:
By comparing given equation of cosine with calculated cosines equations, we will get values of \[\alpha ,\beta {\rm{ and }}\alpha \].
\[\begin{array}{l}
{\text{Let’s consider }}\dfrac{{b + c}}{{11}} = \dfrac{{c + a}}{{12}} = \dfrac{{a + b}}{{13}} = \lambda (say)\\
b + c = 11\lambda {\rm{ }}...{\rm{(i)}}\\
c + a = 12\lambda {\rm{ }}...{\rm{(ii)}}\\
a + b = 13\lambda {\rm{ }}...{\rm{(iii)}}
\end{array}\]
By adding Eqs. (i), (ii) and (iii), we get
\[\begin{array}{l}
b + c + a + c + a + b = 11\lambda + 12\lambda + 13\lambda \\
\Rightarrow 2a + 2b + 2c = 36\lambda \\
\Rightarrow 2(a + b + c) = 36\lambda \\
\Rightarrow a + b + c = 18\lambda {\rm{ }}...{\rm{(i)}}
\end{array}\]
Now, we will find values of a in terms of \[\lambda \]
Subtracting Eq.(i) from Eq.(iv), we get
\[\begin{array}{l}
a + b + c - b - c = 18\lambda - 11\lambda \\
\Rightarrow a = 7\lambda
\end{array}\]
Now, we will find values of b in terms of \[\lambda \]
Subtracting Eq.(ii) from Eq.(iv), we get
\[\begin{array}{l}
a + b + c - a - c = 18\lambda - 12\lambda \\
\Rightarrow b = 6\lambda
\end{array}\]
Now, we will find values of c in terms of \[\lambda \]
Subtracting Eq.(iii) from Eq.(iv), we get
\[\begin{array}{l}
a + b + c - a - b = 18\lambda - 13\lambda \\
\Rightarrow c = 5\lambda
\end{array}\]
Now, we get \[a = 7\lambda ,b = 6\lambda {\text{ and }}c = 5\lambda \]
To derive values of \[\cos A,\cos B{\text{ and }}\cos C\], we can use cosine formulas.
Firstly, we will derive value of \[\cos A\]
\[\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
Now, we can put values of a, b and c in this equation.
\[ = \dfrac{{{{(6\lambda )}^2} + {{(5\lambda )}^2} - {{(7\lambda )}^2}}}{{2 \times 6\lambda \times 7\lambda }}\]
This equation can be written as,
\[ = \dfrac{{36{\lambda ^2} + 25{\lambda ^2} - 49{\lambda ^2}}}{{60{\lambda ^2}}}\]
Now, we can solve this equation to get value of \[\cos A\].
\[\begin{array}{l}
= \dfrac{{61{\lambda ^2} - 49{\lambda ^2}}}{{60{\lambda ^2}}}\\
= \dfrac{{12{\lambda ^2}}}{{60{\lambda ^2}}}\\
= \dfrac{1}{5}
\end{array}\]
Now, we will find value of \[\cos B \]
\[\cos B = \dfrac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\]
Now, we can put values of a, b, and c in this equation.
\[ = \dfrac{{{{(7\lambda )}^2} + {{(5\lambda )}^2} - {{(6\lambda )}^2}}}{{2 \times 7\lambda \times 5\lambda }}\]
This equation can be written as,
\[ = \dfrac{{49{\lambda ^2} + 25{\lambda ^2} - 36{\lambda ^2}}}{{70{\lambda ^2}}}\]
Now, we can solve this equation to get value of \[\cos B\].
\[\begin{array}{l}
= \dfrac{{74{\lambda ^2} - 36{\lambda ^2}}}{{70{\lambda ^2}}}\\
= \dfrac{{38{\lambda ^2}}}{{70{\lambda ^2}}}\\
= \dfrac{{19}}{{35}}
\end{array}\]
Now, we will find value of \[\cos C\]
\[\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\]
Now, we can put values of a, b, and c in this equation.
\[ = \dfrac{{{{(7\lambda )}^2} + {{(6\lambda )}^2} - {{(5\lambda )}^2}}}{{2 \times 7\lambda \times 6\lambda }}\]
This equation can be written as,
\[ = \dfrac{{49{\lambda ^2} + 36{\lambda ^2} - 25{\lambda ^2}}}{{84{\lambda ^2}}}\]
Now, we can solve this equation to get value of \[\cos B\].
\[\begin{array}{l}
= \dfrac{{85{\lambda ^2} - 25{\lambda ^2}}}{{84{\lambda ^2}}}\\
= \dfrac{{60{\lambda ^2}}}{{84{\lambda ^2}}}\\
= \dfrac{5}{7}
\end{array}\]
We can rewrite these equations in ratio form as
\[\begin{array}{l}
\cos A:\cos B:\cos C = \dfrac{1}{5}:\dfrac{{19}}{{35}}:\dfrac{5}{7}\\
\therefore \dfrac{{\cos A}}{7}:\dfrac{{\cos B}}{{19}}:\dfrac{{\cos C}}{{25}}{\rm{ }}...{\rm{(v)}}
\end{array}\]
But, given equation is
\[\dfrac{{cosA}}{\alpha } = \dfrac{{\cos B}}{\beta } = \dfrac{{\cos C}}{\gamma }{\rm{ }}...{\rm{(vi)}}\]
By comparing Eqs. (v) and (vi), we get
\[ \Rightarrow \alpha = 7,\beta = 19,\gamma = 25\]
Hence, the option (c) is correct.
Note: Calculation plays an important role in these types of trigonometric problems. Students get confused when to use cosine rules between \[\cos A, \cos B\text{ }and\text { }\cos C \]. One can do mistake like \[\cos B = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\] instead of \[\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

