
Given $\csc x=8$; how do you find $\sin \dfrac{x}{2}$ , $\cos \dfrac{x}{2}$,$\tan \dfrac{x}{2}$?
(a) Using trigonometric identities
(b) Using triangles
(c) Using linear formulas
(d) All of them
Answer
546.6k+ views
Hint: We are to find the value of $\sin \dfrac{x}{2}$ , $\cos \dfrac{x}{2}$,$\tan \dfrac{x}{2}$where we were given $\csc x=8$. Now, if we also know $\cos x=\sqrt{1-{{\sin }^{2}}x}$, we will initially find cos x. Then we will use the formula of $\cos x=2{{\cos }^{2}}\dfrac{x}{2}-1$and ${{\sin }^{2}}\dfrac{x}{2}=\dfrac{1}{2}\left( 1-\cos x \right)$, to get the value of $\sin \dfrac{x}{2}$ , $\cos \dfrac{x}{2}$. Then using the value of $\tan x=\dfrac{\sin x}{\cos x}$ , we also get the value of $\tan \dfrac{x}{2}$.
Complete step by step solution:
We will start with,
$\csc x=8$;
We also know,$\sin x=\dfrac{1}{\csc x}=\dfrac{1}{8}$ ,
So, $\sin x=\dfrac{1}{8}$,
And as, ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ , we have, ${{\cos }^{2}}x=1-{{\sin }^{2}}x$
So, $\cos x=\sqrt{1-{{\sin }^{2}}x}$
Putting the value of sin x we get,
$\cos x=\sqrt{1-{{\left( \dfrac{1}{8} \right)}^{2}}}$
Simplifying,
$\cos x=\sqrt{1-\dfrac{1}{64}}=\sqrt{\dfrac{63}{64}}$
So, $\cos x=\pm \dfrac{\sqrt{63}}{8}$
On the other hand, we also know, $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ and $\cos x=2{{\cos }^{2}}\dfrac{x}{2}-1$ , using the trigonometric identities.
We have, $\cos x=2{{\cos }^{2}}\dfrac{x}{2}-1$,
$\Rightarrow {{\cos }^{2}}\dfrac{x}{2}=\dfrac{1}{2}\left( 1+\cos x \right)$
Now, putting the value, $\cos x=\pm \dfrac{\sqrt{63}}{8}$,
$\Rightarrow {{\cos }^{2}}\dfrac{x}{2}=\dfrac{1}{2}\left( 1\pm \dfrac{\sqrt{63}}{8} \right)$
So, we are getting two values, ${{\cos }^{2}}\dfrac{x}{2}=\left( \dfrac{8\pm \sqrt{63}}{16} \right)$.
Hence,
$\cos \dfrac{x}{2}=\sqrt{\dfrac{8\pm \sqrt{63}}{16}}$
More simplifying,
$\cos \dfrac{x}{2}=\dfrac{\sqrt{8\pm 3\sqrt{7}}}{4}=\dfrac{1}{2}\left( 3\sqrt{2}\pm \sqrt{14} \right)$
Again, we also know, $\cos x=1-2{{\sin }^{2}}\dfrac{x}{2}$,
Then, ${{\sin }^{2}}\dfrac{x}{2}=\dfrac{1}{2}\left( 1-\cos x \right)$,
Now, putting the value, $\cos x=\pm \dfrac{\sqrt{63}}{8}$,
$\Rightarrow {{\sin }^{2}}\dfrac{x}{2}=\dfrac{1}{2}\left( 1\mp \dfrac{\sqrt{63}}{8} \right)$
So, we are getting two values, ${{\sin }^{2}}\dfrac{x}{2}=\left( \dfrac{8\mp \sqrt{63}}{16} \right)$.
Hence,
$\sin \dfrac{x}{2}=\sqrt{\dfrac{8\mp \sqrt{63}}{16}}$
More simplifying,
$\sin \dfrac{x}{2}=\dfrac{\sqrt{8\mp 3\sqrt{7}}}{4}=\dfrac{1}{2}\left( 3\sqrt{2}\mp \sqrt{14} \right)$
So, if $\cos \dfrac{x}{2}=\dfrac{1}{2}\left( 3\sqrt{2}+\sqrt{14} \right)$ and $\sin \dfrac{x}{2}=\dfrac{1}{2}\left( 3\sqrt{2}-\sqrt{14} \right)$and $\tan \dfrac{x}{2}=\dfrac{\dfrac{1}{2}\left( 3\sqrt{2}-\sqrt{14} \right)}{\dfrac{1}{2}\left( 3\sqrt{2}+\sqrt{14} \right)}$
Thus, $\tan \dfrac{x}{2}=\dfrac{3\sqrt{2}-\sqrt{14}}{3\sqrt{2}+\sqrt{14}}=\dfrac{{{\left( 3\sqrt{2}-\sqrt{14} \right)}^{2}}}{{{\left( 3\sqrt{2} \right)}^{2}}-{{\left( \sqrt{14} \right)}^{2}}}$
More simplifying, \[\tan \dfrac{x}{2}=\dfrac{{{\left( 3\sqrt{2} \right)}^{2}}+{{\left( \sqrt{14} \right)}^{2}}-2.3\sqrt{2}.\sqrt{14}}{18-14}=\dfrac{18+14-12\sqrt{7}}{4}=\dfrac{32-12\sqrt{7}}{4}=8-3\sqrt{7}\]
And, on the other hand,
If $\cos \dfrac{x}{2}=\dfrac{1}{2}\left( 3\sqrt{2}-\sqrt{14} \right)$ and $\sin \dfrac{x}{2}=\dfrac{1}{2}\left( 3\sqrt{2}+\sqrt{14} \right)$and $\tan \dfrac{x}{2}=\dfrac{\dfrac{1}{2}\left( 3\sqrt{2}+\sqrt{14} \right)}{\dfrac{1}{2}\left( 3\sqrt{2}-\sqrt{14} \right)}$
Thus, $\tan \dfrac{x}{2}=\dfrac{3\sqrt{2}+\sqrt{14}}{3\sqrt{2}-\sqrt{14}}=\dfrac{{{\left( 3\sqrt{2}+\sqrt{14} \right)}^{2}}}{{{\left( 3\sqrt{2} \right)}^{2}}-{{\left( \sqrt{14} \right)}^{2}}}$
More simplifying, \[\tan \dfrac{x}{2}=\dfrac{{{\left( 3\sqrt{2} \right)}^{2}}+{{\left( \sqrt{14} \right)}^{2}}+2.3\sqrt{2}.\sqrt{14}}{18-14}=\dfrac{18+14+12\sqrt{7}}{4}=\dfrac{32+12\sqrt{7}}{4}=8+3\sqrt{7}\]
So, the correct answer is “Option a”.
Note: In this problem, we have generally used the double angle formula to get our results. There are three forms of double angle formula for cosine. We have used two forms here in the problem, and the one we have not used is $\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x$ . Then, we only need to know one of them as we can derive the other two by the Pythagorean formula.
Complete step by step solution:
We will start with,
$\csc x=8$;
We also know,$\sin x=\dfrac{1}{\csc x}=\dfrac{1}{8}$ ,
So, $\sin x=\dfrac{1}{8}$,
And as, ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ , we have, ${{\cos }^{2}}x=1-{{\sin }^{2}}x$
So, $\cos x=\sqrt{1-{{\sin }^{2}}x}$
Putting the value of sin x we get,
$\cos x=\sqrt{1-{{\left( \dfrac{1}{8} \right)}^{2}}}$
Simplifying,
$\cos x=\sqrt{1-\dfrac{1}{64}}=\sqrt{\dfrac{63}{64}}$
So, $\cos x=\pm \dfrac{\sqrt{63}}{8}$
On the other hand, we also know, $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ and $\cos x=2{{\cos }^{2}}\dfrac{x}{2}-1$ , using the trigonometric identities.
We have, $\cos x=2{{\cos }^{2}}\dfrac{x}{2}-1$,
$\Rightarrow {{\cos }^{2}}\dfrac{x}{2}=\dfrac{1}{2}\left( 1+\cos x \right)$
Now, putting the value, $\cos x=\pm \dfrac{\sqrt{63}}{8}$,
$\Rightarrow {{\cos }^{2}}\dfrac{x}{2}=\dfrac{1}{2}\left( 1\pm \dfrac{\sqrt{63}}{8} \right)$
So, we are getting two values, ${{\cos }^{2}}\dfrac{x}{2}=\left( \dfrac{8\pm \sqrt{63}}{16} \right)$.
Hence,
$\cos \dfrac{x}{2}=\sqrt{\dfrac{8\pm \sqrt{63}}{16}}$
More simplifying,
$\cos \dfrac{x}{2}=\dfrac{\sqrt{8\pm 3\sqrt{7}}}{4}=\dfrac{1}{2}\left( 3\sqrt{2}\pm \sqrt{14} \right)$
Again, we also know, $\cos x=1-2{{\sin }^{2}}\dfrac{x}{2}$,
Then, ${{\sin }^{2}}\dfrac{x}{2}=\dfrac{1}{2}\left( 1-\cos x \right)$,
Now, putting the value, $\cos x=\pm \dfrac{\sqrt{63}}{8}$,
$\Rightarrow {{\sin }^{2}}\dfrac{x}{2}=\dfrac{1}{2}\left( 1\mp \dfrac{\sqrt{63}}{8} \right)$
So, we are getting two values, ${{\sin }^{2}}\dfrac{x}{2}=\left( \dfrac{8\mp \sqrt{63}}{16} \right)$.
Hence,
$\sin \dfrac{x}{2}=\sqrt{\dfrac{8\mp \sqrt{63}}{16}}$
More simplifying,
$\sin \dfrac{x}{2}=\dfrac{\sqrt{8\mp 3\sqrt{7}}}{4}=\dfrac{1}{2}\left( 3\sqrt{2}\mp \sqrt{14} \right)$
So, if $\cos \dfrac{x}{2}=\dfrac{1}{2}\left( 3\sqrt{2}+\sqrt{14} \right)$ and $\sin \dfrac{x}{2}=\dfrac{1}{2}\left( 3\sqrt{2}-\sqrt{14} \right)$and $\tan \dfrac{x}{2}=\dfrac{\dfrac{1}{2}\left( 3\sqrt{2}-\sqrt{14} \right)}{\dfrac{1}{2}\left( 3\sqrt{2}+\sqrt{14} \right)}$
Thus, $\tan \dfrac{x}{2}=\dfrac{3\sqrt{2}-\sqrt{14}}{3\sqrt{2}+\sqrt{14}}=\dfrac{{{\left( 3\sqrt{2}-\sqrt{14} \right)}^{2}}}{{{\left( 3\sqrt{2} \right)}^{2}}-{{\left( \sqrt{14} \right)}^{2}}}$
More simplifying, \[\tan \dfrac{x}{2}=\dfrac{{{\left( 3\sqrt{2} \right)}^{2}}+{{\left( \sqrt{14} \right)}^{2}}-2.3\sqrt{2}.\sqrt{14}}{18-14}=\dfrac{18+14-12\sqrt{7}}{4}=\dfrac{32-12\sqrt{7}}{4}=8-3\sqrt{7}\]
And, on the other hand,
If $\cos \dfrac{x}{2}=\dfrac{1}{2}\left( 3\sqrt{2}-\sqrt{14} \right)$ and $\sin \dfrac{x}{2}=\dfrac{1}{2}\left( 3\sqrt{2}+\sqrt{14} \right)$and $\tan \dfrac{x}{2}=\dfrac{\dfrac{1}{2}\left( 3\sqrt{2}+\sqrt{14} \right)}{\dfrac{1}{2}\left( 3\sqrt{2}-\sqrt{14} \right)}$
Thus, $\tan \dfrac{x}{2}=\dfrac{3\sqrt{2}+\sqrt{14}}{3\sqrt{2}-\sqrt{14}}=\dfrac{{{\left( 3\sqrt{2}+\sqrt{14} \right)}^{2}}}{{{\left( 3\sqrt{2} \right)}^{2}}-{{\left( \sqrt{14} \right)}^{2}}}$
More simplifying, \[\tan \dfrac{x}{2}=\dfrac{{{\left( 3\sqrt{2} \right)}^{2}}+{{\left( \sqrt{14} \right)}^{2}}+2.3\sqrt{2}.\sqrt{14}}{18-14}=\dfrac{18+14+12\sqrt{7}}{4}=\dfrac{32+12\sqrt{7}}{4}=8+3\sqrt{7}\]
So, the correct answer is “Option a”.
Note: In this problem, we have generally used the double angle formula to get our results. There are three forms of double angle formula for cosine. We have used two forms here in the problem, and the one we have not used is $\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x$ . Then, we only need to know one of them as we can derive the other two by the Pythagorean formula.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

