
Given an equilateral triangle ABC with side length equal to ‘a’. Let M and N be two points respectively on the side AB and AC such that $\overrightarrow {AN} = K\overrightarrow {AC} $ and $\overrightarrow {AM} = \dfrac{{\overrightarrow {AB} }}{3}$. If $\overrightarrow {BN} $ and$\overrightarrow {CM} $ are orthogonal then the value of K is equal to
(A) $\dfrac{1}{5}$
(B) $\dfrac{1}{4}$
(C) $\dfrac{1}{3}$
(D) $\dfrac{1}{2}$
Answer
585.3k+ views
Hint: In equilateral$\Delta $all the sides are equal and all the angles are equal to each other. All the angle of an equilateral triangle are ${60^0}$
Complete Step by Step Solution:
Let us consider an equilateral$\Delta $ABC
$\overrightarrow {AM} = \dfrac{{\overrightarrow {AD} }}{3}$
Therefore,$BM = AB - AM$
$ = AB - \dfrac{{AB}}{3}$
$\overrightarrow {BM} = \dfrac{{2AB}}{3}$
$\overrightarrow {AN} = K\overrightarrow {AC} $ . . . . (given)
$\overrightarrow {CN} = \overrightarrow {AC} - \overrightarrow A .$
$ = \overrightarrow {AC} - K\overrightarrow {AC} $
$\overrightarrow {CN} = \overrightarrow {AC} (1 - k)$
If $\overrightarrow {BN} $and$\overrightarrow {CN} $are orthogonal, then
$\overrightarrow {BN} \times \overrightarrow {CN} = 0$
How, We can find the value of $\overrightarrow {BN} $ and $\overrightarrow {CN} $
So,
\[\overrightarrow {BN} = \overrightarrow c - \dfrac{{\overrightarrow b }}{3}\]
$\overrightarrow {CN} = \lambda \overrightarrow c - \overrightarrow b $
Therefore,
$\left( {\overrightarrow c - \dfrac{{\overrightarrow b }}{3}} \right)(\lambda \overrightarrow c - \overrightarrow b ) = 0$
$\lambda {\left| {\overrightarrow c } \right|^2} - \dfrac{\lambda }{3}\overrightarrow c .\overrightarrow b - \overrightarrow c .\overrightarrow b + \dfrac{{{{\left| {\overrightarrow b } \right|}^2}}}{3} = 0$
$\lambda {a^2} - \dfrac{\lambda }{3}{a^2} \times \dfrac{1}{2} - \dfrac{{{a^2}}}{2} + \dfrac{{{a^2}}}{3} = 0$
Then common$'\lambda '$from this equation.
$\lambda \left( {{a^2} - \dfrac{{{a^2}}}{3}} \right) - \dfrac{{{a^2}}}{2} + \dfrac{{{a^2}}}{3} = 0$
$\lambda \left( {{a^2} - \dfrac{{{a^2}}}{6}} \right) = \dfrac{{{a^2}}}{2} - \dfrac{{{a^2}}}{3}$
$\lambda \left( {\dfrac{{6{a^2} - {a^2}}}{6}} \right) = \dfrac{{3{a^2} - 2{a^2}}}{6}$
$\lambda \left( {\dfrac{{5{a^2}}}{6}} \right) = \dfrac{{{a^2}}}{6}$
$\lambda = \dfrac{{{a^2}}}{{5{a^2}}}$
$\lambda = \dfrac{1}{5}$
If the value of $\lambda = \dfrac{1}{5}$, then the side of $C$ is $AM = 1$and $NC = 4$ and $AC = 5$
Then $\overrightarrow {AN} = K\overrightarrow {AC} $
Then $K = \dfrac{{\overrightarrow {AN} }}{{\overrightarrow {AC} }} = \dfrac{1}{5}$
So, the value of $K$ is $\dfrac{1}{5}$
Therefore from the above explanation the correct option is [A] $\dfrac{1}{5}$.
Note: Two vectors are said to be orthogonal if they are perpendicular to each other.
That means the angle between them is ${90^0}$.
We know that $\cos {90^0} = 0$
Therefore, $\overrightarrow a \times \overrightarrow b = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos {90^0} = 0$
That means, two vectors $\overrightarrow a $ and $\overrightarrow b $are perpendicular if $\overrightarrow a \times \overrightarrow b = 0$
Complete Step by Step Solution:
Let us consider an equilateral$\Delta $ABC
$\overrightarrow {AM} = \dfrac{{\overrightarrow {AD} }}{3}$
Therefore,$BM = AB - AM$
$ = AB - \dfrac{{AB}}{3}$
$\overrightarrow {BM} = \dfrac{{2AB}}{3}$
$\overrightarrow {AN} = K\overrightarrow {AC} $ . . . . (given)
$\overrightarrow {CN} = \overrightarrow {AC} - \overrightarrow A .$
$ = \overrightarrow {AC} - K\overrightarrow {AC} $
$\overrightarrow {CN} = \overrightarrow {AC} (1 - k)$
If $\overrightarrow {BN} $and$\overrightarrow {CN} $are orthogonal, then
$\overrightarrow {BN} \times \overrightarrow {CN} = 0$
How, We can find the value of $\overrightarrow {BN} $ and $\overrightarrow {CN} $
So,
\[\overrightarrow {BN} = \overrightarrow c - \dfrac{{\overrightarrow b }}{3}\]
$\overrightarrow {CN} = \lambda \overrightarrow c - \overrightarrow b $
Therefore,
$\left( {\overrightarrow c - \dfrac{{\overrightarrow b }}{3}} \right)(\lambda \overrightarrow c - \overrightarrow b ) = 0$
$\lambda {\left| {\overrightarrow c } \right|^2} - \dfrac{\lambda }{3}\overrightarrow c .\overrightarrow b - \overrightarrow c .\overrightarrow b + \dfrac{{{{\left| {\overrightarrow b } \right|}^2}}}{3} = 0$
$\lambda {a^2} - \dfrac{\lambda }{3}{a^2} \times \dfrac{1}{2} - \dfrac{{{a^2}}}{2} + \dfrac{{{a^2}}}{3} = 0$
Then common$'\lambda '$from this equation.
$\lambda \left( {{a^2} - \dfrac{{{a^2}}}{3}} \right) - \dfrac{{{a^2}}}{2} + \dfrac{{{a^2}}}{3} = 0$
$\lambda \left( {{a^2} - \dfrac{{{a^2}}}{6}} \right) = \dfrac{{{a^2}}}{2} - \dfrac{{{a^2}}}{3}$
$\lambda \left( {\dfrac{{6{a^2} - {a^2}}}{6}} \right) = \dfrac{{3{a^2} - 2{a^2}}}{6}$
$\lambda \left( {\dfrac{{5{a^2}}}{6}} \right) = \dfrac{{{a^2}}}{6}$
$\lambda = \dfrac{{{a^2}}}{{5{a^2}}}$
$\lambda = \dfrac{1}{5}$
If the value of $\lambda = \dfrac{1}{5}$, then the side of $C$ is $AM = 1$and $NC = 4$ and $AC = 5$
Then $\overrightarrow {AN} = K\overrightarrow {AC} $
Then $K = \dfrac{{\overrightarrow {AN} }}{{\overrightarrow {AC} }} = \dfrac{1}{5}$
So, the value of $K$ is $\dfrac{1}{5}$
Therefore from the above explanation the correct option is [A] $\dfrac{1}{5}$.
Note: Two vectors are said to be orthogonal if they are perpendicular to each other.
That means the angle between them is ${90^0}$.
We know that $\cos {90^0} = 0$
Therefore, $\overrightarrow a \times \overrightarrow b = \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos {90^0} = 0$
That means, two vectors $\overrightarrow a $ and $\overrightarrow b $are perpendicular if $\overrightarrow a \times \overrightarrow b = 0$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

