
Given $ A={{60}^{\circ }} $ and $ B={{30}^{\circ }} $ , verify that: $ \cos \left( A+B \right)=\cos A.\cos B-\sin A.\sin B $ ?
Answer
567.6k+ views
Hint: We start solving the problem by considering the L.H.S (Left Hand Side) of the given equation. We then substitute the given values of A and B in it and perform the necessary calculations to get its value. We then consider the R.H.S (Right Hand Side) of the given equation and substitute the given values of A and B in it. We then make the necessary calculations to get its value. We then compare both values of L.H.S (Left Hand Side) and R.H.S (Right Hand Side) to complete the proof.
Complete step by step answer:
According to the problem, we need to verify $ \cos \left( A+B \right)=\cos A.\cos B-\sin A.\sin B $ if it is given $ A={{60}^{\circ }} $ and $ B={{30}^{\circ }} $ .
Let us first find the value of L.H.S (Left Hand Side).
So, we have $ \cos \left( A+B \right)=\cos \left( {{60}^{\circ }}+{{30}^{\circ }} \right) $ .
$ \Rightarrow \cos \left( A+B \right)=\cos \left( {{90}^{\circ }} \right) $ .
$ \Rightarrow \cos \left( A+B \right)=0 $ ---(1).
Now, let us find the value of R.H.S (Right-Hand side).
So, we have $ \cos A.\cos B-\sin A.\sin B $ .
$ \Rightarrow \cos A.\cos B-\sin A.\sin B=\cos \left( {{60}^{\circ }} \right).\cos \left( {{30}^{\circ }} \right)-\sin \left( {{60}^{\circ }} \right).\sin \left( {{30}^{\circ }} \right) $ ---(2).
We know that $ \cos \left( {{60}^{\circ }} \right)=\dfrac{1}{2} $ , $ \cos \left( {{30}^{\circ }} \right)=\dfrac{\sqrt{3}}{2} $ , $ \sin \left( {{60}^{\circ }} \right)=\dfrac{\sqrt{3}}{2} $ and $ \sin \left( {{30}^{\circ }} \right)=\dfrac{1}{2} $ . Let us substitute these results in equation (2).
$ \Rightarrow \cos A.\cos B-\sin A.\sin B=\left( \dfrac{1}{2}\times \dfrac{\sqrt{3}}{2} \right)-\left( \dfrac{\sqrt{3}}{2}\times \dfrac{1}{2} \right) $ .
$ \Rightarrow \cos A.\cos B-\sin A.\sin B=\left( \dfrac{\sqrt{3}}{4} \right)-\left( \dfrac{\sqrt{3}}{4} \right) $ .
$ \Rightarrow \cos A.\cos B-\sin A.\sin B=0 $ ---(3).
From equations (1) and (3), we can see that the values of $ \cos \left( A+B \right) $ and $ \cos A.\cos B-\sin A.\sin B $ are equal. This means that we have proved L.H.S (Left Hand Side) = R.H.S (Right Hand Side).
$ \therefore $ We have verified the given result $ \cos \left( A+B \right)=\cos A.\cos B-\sin A.\sin B $ by taking the values $ A={{60}^{\circ }} $ and $ B={{30}^{\circ }} $ .
Note:
We can also solve the R.H.S (Right Hand Side) of the given equation as shown below:
So, we have $ \cos A.\cos B-\sin A.\sin B $ .
$ \Rightarrow \cos A.\cos B-\sin A.\sin B=\cos \left( {{60}^{\circ }} \right).\cos \left( {{30}^{\circ }} \right)-\sin \left( {{60}^{\circ }} \right).\sin \left( {{30}^{\circ }} \right) $ .
\[\Rightarrow \cos A.\cos B-\sin A.\sin B=\cos \left( {{60}^{\circ }} \right).\cos \left( {{30}^{\circ }} \right)-\sin \left( {{90}^{\circ }}-{{30}^{\circ }} \right).\sin \left( {{90}^{\circ }}-{{60}^{\circ }} \right)\].
We know that $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ .
\[\Rightarrow \cos A.\cos B-\sin A.\sin B=\cos \left( {{60}^{\circ }} \right).\cos \left( {{30}^{\circ }} \right)-\cos \left( {{30}^{\circ }} \right).\cos \left( {{60}^{\circ }} \right)\].
\[\Rightarrow \cos A.\cos B-\sin A.\sin B=\cos \left( {{60}^{\circ }} \right).\cos \left( {{30}^{\circ }} \right)-\cos \left( {{60}^{\circ }} \right).\cos \left( {{30}^{\circ }} \right)\].
\[\Rightarrow \cos A.\cos B-\sin A.\sin B=0\].
Complete step by step answer:
According to the problem, we need to verify $ \cos \left( A+B \right)=\cos A.\cos B-\sin A.\sin B $ if it is given $ A={{60}^{\circ }} $ and $ B={{30}^{\circ }} $ .
Let us first find the value of L.H.S (Left Hand Side).
So, we have $ \cos \left( A+B \right)=\cos \left( {{60}^{\circ }}+{{30}^{\circ }} \right) $ .
$ \Rightarrow \cos \left( A+B \right)=\cos \left( {{90}^{\circ }} \right) $ .
$ \Rightarrow \cos \left( A+B \right)=0 $ ---(1).
Now, let us find the value of R.H.S (Right-Hand side).
So, we have $ \cos A.\cos B-\sin A.\sin B $ .
$ \Rightarrow \cos A.\cos B-\sin A.\sin B=\cos \left( {{60}^{\circ }} \right).\cos \left( {{30}^{\circ }} \right)-\sin \left( {{60}^{\circ }} \right).\sin \left( {{30}^{\circ }} \right) $ ---(2).
We know that $ \cos \left( {{60}^{\circ }} \right)=\dfrac{1}{2} $ , $ \cos \left( {{30}^{\circ }} \right)=\dfrac{\sqrt{3}}{2} $ , $ \sin \left( {{60}^{\circ }} \right)=\dfrac{\sqrt{3}}{2} $ and $ \sin \left( {{30}^{\circ }} \right)=\dfrac{1}{2} $ . Let us substitute these results in equation (2).
$ \Rightarrow \cos A.\cos B-\sin A.\sin B=\left( \dfrac{1}{2}\times \dfrac{\sqrt{3}}{2} \right)-\left( \dfrac{\sqrt{3}}{2}\times \dfrac{1}{2} \right) $ .
$ \Rightarrow \cos A.\cos B-\sin A.\sin B=\left( \dfrac{\sqrt{3}}{4} \right)-\left( \dfrac{\sqrt{3}}{4} \right) $ .
$ \Rightarrow \cos A.\cos B-\sin A.\sin B=0 $ ---(3).
From equations (1) and (3), we can see that the values of $ \cos \left( A+B \right) $ and $ \cos A.\cos B-\sin A.\sin B $ are equal. This means that we have proved L.H.S (Left Hand Side) = R.H.S (Right Hand Side).
$ \therefore $ We have verified the given result $ \cos \left( A+B \right)=\cos A.\cos B-\sin A.\sin B $ by taking the values $ A={{60}^{\circ }} $ and $ B={{30}^{\circ }} $ .
Note:
We can also solve the R.H.S (Right Hand Side) of the given equation as shown below:
So, we have $ \cos A.\cos B-\sin A.\sin B $ .
$ \Rightarrow \cos A.\cos B-\sin A.\sin B=\cos \left( {{60}^{\circ }} \right).\cos \left( {{30}^{\circ }} \right)-\sin \left( {{60}^{\circ }} \right).\sin \left( {{30}^{\circ }} \right) $ .
\[\Rightarrow \cos A.\cos B-\sin A.\sin B=\cos \left( {{60}^{\circ }} \right).\cos \left( {{30}^{\circ }} \right)-\sin \left( {{90}^{\circ }}-{{30}^{\circ }} \right).\sin \left( {{90}^{\circ }}-{{60}^{\circ }} \right)\].
We know that $ \sin \left( {{90}^{\circ }}-\alpha \right)=\cos \alpha $ .
\[\Rightarrow \cos A.\cos B-\sin A.\sin B=\cos \left( {{60}^{\circ }} \right).\cos \left( {{30}^{\circ }} \right)-\cos \left( {{30}^{\circ }} \right).\cos \left( {{60}^{\circ }} \right)\].
\[\Rightarrow \cos A.\cos B-\sin A.\sin B=\cos \left( {{60}^{\circ }} \right).\cos \left( {{30}^{\circ }} \right)-\cos \left( {{60}^{\circ }} \right).\cos \left( {{30}^{\circ }} \right)\].
\[\Rightarrow \cos A.\cos B-\sin A.\sin B=0\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

