
Given a rectangle with a fixed perimeter of 24 meters, if we increase the length by 1m the width and area will vary accordingly. Use the following table of values to look at how the width and area vary as the length varies.
What do you observe? Write your observations in your notebooks.
Length (in m) 1 2 3 4 5 6 7 8 9 Width (in m) 11 10 ……. ……. ……. ……. ……. ……. ……. Area(in $ {{\text{m}}^2} $ ) 11 20 ……. ……. ……. ……. ……. ……. …….
| Length (in m) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| Width (in m) | 11 | 10 | ……. | ……. | ……. | ……. | ……. | ……. | ……. |
| Area(in $ {{\text{m}}^2} $ ) | 11 | 20 | ……. | ……. | ……. | ……. | ……. | ……. | ……. |
Answer
601.2k+ views
Hint:From the question it is clear that the perimeter of the rectangle is 24 meters. The perimeter of the rectangle is given by, where l=length and w=width. Now, we can find the width value from the given length and perimeter value. Finally we can find the area by Area= Length*Width
Complete step-by-step answer:
Given, Perimeter of Rectangle= 24 meters
$ \Rightarrow $ $ 2 \times \left( {{\text{l + w}}} \right) $ =24
$ \Rightarrow $ $ {\text{l + w}} $ = $ \dfrac{{24}}{2} = 12 $ meters
$ \Rightarrow $ w = 12 – l
Therefore, from the table we can now find the width values as length varies
That is, if l = 3 $ \Rightarrow $ w = 12 - 3 = 9
If l =4 $ \Rightarrow $ w = 12 – 4 =8
If l =5 $ \Rightarrow $ w = 12 – 5 =7
If l =6 $ \Rightarrow $ w = 12 – 6 =6
If l =7 $ \Rightarrow $ w = 12 – 7 =5
If l =8 $ \Rightarrow $ w = 12 – 8 =4
If l =9 $ \Rightarrow $ w = 12 – 9 =3
Now, we have both length and width values
Therefore, Area of rectangle = $ {\text{l}} \times {\text{w}} $
Where l = length and w = width
From the above values, if l = 3, w = 9 $ \Rightarrow $ Area = $ 3 \times 9 $ = $ 27{\text{ }}{{\text{m}}^2} $
If l = 4, w = 8 $ \Rightarrow $ Area = $ 4 \times 8 $ = $ {\text{32 }}{{\text{m}}^2} $
If l = 5, w = 7 $ \Rightarrow $ Area = $ 5 \times 7 $ = $ {\text{35 }}{{\text{m}}^2} $
If l = 6, w = 6 $ \Rightarrow $ Area = $ 6 \times 6 $ = $ {\text{36 }}{{\text{m}}^2} $
If l = 7, w = 5 $ \Rightarrow $ Area = $ 7 \times 5 $ = $ {\text{35 }}{{\text{m}}^2} $
If l = 8, w = 4 $ \Rightarrow $ Area = $ 8 \times 4 $ = $ {\text{32 }}{{\text{m}}^2} $
If l = 9, w = 3 $ \Rightarrow $ Area = \[9 \times 3\]=\[{\text{27 }}{{\text{m}}^2}\]
From the above calculations:
Note: If we don’t remember the formula for the perimeter of the rectangle we can add the sides of it, which is length + width + length + width. That is the sum of two times of length and two times of width. If the length and width are equal it forms a square then the perimeter will be four times of the side and the area will be square of the side.
Complete step-by-step answer:
Given, Perimeter of Rectangle= 24 meters
$ \Rightarrow $ $ 2 \times \left( {{\text{l + w}}} \right) $ =24
$ \Rightarrow $ $ {\text{l + w}} $ = $ \dfrac{{24}}{2} = 12 $ meters
$ \Rightarrow $ w = 12 – l
Therefore, from the table we can now find the width values as length varies
That is, if l = 3 $ \Rightarrow $ w = 12 - 3 = 9
If l =4 $ \Rightarrow $ w = 12 – 4 =8
If l =5 $ \Rightarrow $ w = 12 – 5 =7
If l =6 $ \Rightarrow $ w = 12 – 6 =6
If l =7 $ \Rightarrow $ w = 12 – 7 =5
If l =8 $ \Rightarrow $ w = 12 – 8 =4
If l =9 $ \Rightarrow $ w = 12 – 9 =3
Now, we have both length and width values
Therefore, Area of rectangle = $ {\text{l}} \times {\text{w}} $
Where l = length and w = width
From the above values, if l = 3, w = 9 $ \Rightarrow $ Area = $ 3 \times 9 $ = $ 27{\text{ }}{{\text{m}}^2} $
If l = 4, w = 8 $ \Rightarrow $ Area = $ 4 \times 8 $ = $ {\text{32 }}{{\text{m}}^2} $
If l = 5, w = 7 $ \Rightarrow $ Area = $ 5 \times 7 $ = $ {\text{35 }}{{\text{m}}^2} $
If l = 6, w = 6 $ \Rightarrow $ Area = $ 6 \times 6 $ = $ {\text{36 }}{{\text{m}}^2} $
If l = 7, w = 5 $ \Rightarrow $ Area = $ 7 \times 5 $ = $ {\text{35 }}{{\text{m}}^2} $
If l = 8, w = 4 $ \Rightarrow $ Area = $ 8 \times 4 $ = $ {\text{32 }}{{\text{m}}^2} $
If l = 9, w = 3 $ \Rightarrow $ Area = \[9 \times 3\]=\[{\text{27 }}{{\text{m}}^2}\]
From the above calculations:
| Length (in m) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| Width (in m) | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 |
| Area (in $ {{\text{m}}^2} $ ) | 11 | 20 | 27 | 32 | 35 | 36 | 35 | 32 | 27 |
Note: If we don’t remember the formula for the perimeter of the rectangle we can add the sides of it, which is length + width + length + width. That is the sum of two times of length and two times of width. If the length and width are equal it forms a square then the perimeter will be four times of the side and the area will be square of the side.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

