
Given a matrix $A=\left[ \begin{matrix}
a & b & c \\
b & c & a \\
c & a & b \\
\end{matrix} \right]$ , where a, b, c are real positive numbers, abc = 1and ${{A}^{T}}A=I$ then find the value of ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}.$
Answer
616.8k+ views
Hint:Find${{A}^{T}}$ by changing the row elements to column. Now, use the relation ${{A}^{T}}A=I$ and $abc=1$to get the value of ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}$. Use the relation
${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)$
Complete step by step answer:
Here, matrix A is given as
$A=\left[ \begin{matrix}
a & b & c \\
b & c & a \\
c & a & b \\
\end{matrix} \right]$……….. (i)
Where a, b, c are real numbers, with relations
abc = 1 ……………….. (ii)
${{A}^{T}}A=I$ ……………(iii)
We need to determine the value of ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}$ from the above equations.
Now, let us find the value of ${{A}^{T}}$ and put values of A and ${{A}^{T}}$in equation (iii) to relation in a, b, c.
So, ${{A}^{T}}$ can be written using the equation (i) i.e. from ‘A’:
${{A}^{T}}=\left[ \begin{matrix}
a & b & c \\
b & c & a \\
c & a & b \\
\end{matrix} \right]$………. (iv)
So, putting values of A and ${{A}^{T}}$ in equation (iii), we get
A.${{A}^{T}}$ = I
Where I can be given as
$I=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Hence,
$\left[ \begin{matrix}
a & b & c \\
b & c & a \\
c & a & b \\
\end{matrix} \right]\left[ \begin{matrix}
a & b & c \\
b & c & a \\
c & a & b \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Now, we can get A.${{A}^{T}}$using above equation by multiplying the matrices A and ${{A}^{T}}$in the above equation; we get,
\[\begin{align}
& \\
& \left[ \begin{matrix}
{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}} & \text{ab+bc+ca} & \text{ac+ba+bc} \\
\text{ab+bc+ac} & {{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}} & \text{bc+ac+ab} \\
\text{ac+ab+bc} & \text{bc+ac+ab} & {{\text{c}}^{\text{2}}}\text{+}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}} \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right] \\
\end{align}\]
Now, we can compare the above two matrices and equate the elements to get relations in (a, b, c). Hence, we can further write the above matrix as:
\[\left[ \begin{matrix}
{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}} & \text{ab+bc+ca} & \text{ab+bc+ca} \\
\text{ab+bc+ca} & {{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}} & \text{ab+bc+ca} \\
\text{ab+bc+ca} & \text{ab+bc+ca} & {{a}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}} \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]\]
Hence, we get two relations from above equations as
${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=1$ ………………. (v)
And
$ab+bc+ca=0$……………… (vi)
Now, we know the algebraic identity of ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc$ can be given as
${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)$
Or
$\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-\left( ab+bc+ca \right) \right)$…………..(vii)
Now, put the values of ${{a}^{2}}+{{b}^{2}}+{{c}^{2}},abc,ab+bc+ca$ from equation (v),(ii) and (vi) respectively in the equation (vii), hence, we get
${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3\left( 1 \right)=\left( a+b+c \right)\left( 1-0 \right)$
${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3+\left( a+b+c \right)$………..(viii)
Now, we can use value of a + b + c by using the algebraic identity
${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right)$
Now, using relation (v) and (vi), we can get value of $\left( a+b+c \right)$ as
$\begin{align}
& {{\left( a+b+c \right)}^{2}}=1+2\left( 0 \right) \\
& {{\left( a+b+c \right)}^{2}}=1 \\
\end{align}$
And hence,
$a+b+c=\pm 1$
As we already know the values of (a, b, c) are real and positive from the question, so, $a+b+c$ can never be ‘-1’. Hence, the value of (a + b + c) be ‘1’. Hence,
a + b + c = 1 ………….. (ix).
So, putting value of (a + b + c) in equation
(viii) to get the value of${{a}^{3}}+{{b}^{3}}+{{c}^{3}}$. Hence,we get
${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3+1=4$
So,
${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=4$
Note: One can go wrong with the algebraic identities ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc$ and ${{\left( a+b+c \right)}^{2}}$. So, identities should be very clear for solving these kinds of problems.
One may try calculate exact values of given relations i.e. abc = 1, ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=1$and $ab+bc+ca=0$. So, one can think, we have three equations and three variables so, we can calculate exact values of a,b,c which is the wrong approach for getting value of ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}$. As, we don’t need exact values of a, b, c we need value of ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}$, so try to relate the problem with the algebraic identities. Calculating values of (a, b, c) is the complex approach for these kinds of problems.
${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)$
Complete step by step answer:
Here, matrix A is given as
$A=\left[ \begin{matrix}
a & b & c \\
b & c & a \\
c & a & b \\
\end{matrix} \right]$……….. (i)
Where a, b, c are real numbers, with relations
abc = 1 ……………….. (ii)
${{A}^{T}}A=I$ ……………(iii)
We need to determine the value of ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}$ from the above equations.
Now, let us find the value of ${{A}^{T}}$ and put values of A and ${{A}^{T}}$in equation (iii) to relation in a, b, c.
So, ${{A}^{T}}$ can be written using the equation (i) i.e. from ‘A’:
${{A}^{T}}=\left[ \begin{matrix}
a & b & c \\
b & c & a \\
c & a & b \\
\end{matrix} \right]$………. (iv)
So, putting values of A and ${{A}^{T}}$ in equation (iii), we get
A.${{A}^{T}}$ = I
Where I can be given as
$I=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Hence,
$\left[ \begin{matrix}
a & b & c \\
b & c & a \\
c & a & b \\
\end{matrix} \right]\left[ \begin{matrix}
a & b & c \\
b & c & a \\
c & a & b \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Now, we can get A.${{A}^{T}}$using above equation by multiplying the matrices A and ${{A}^{T}}$in the above equation; we get,
\[\begin{align}
& \\
& \left[ \begin{matrix}
{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}} & \text{ab+bc+ca} & \text{ac+ba+bc} \\
\text{ab+bc+ac} & {{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}} & \text{bc+ac+ab} \\
\text{ac+ab+bc} & \text{bc+ac+ab} & {{\text{c}}^{\text{2}}}\text{+}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}} \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right] \\
\end{align}\]
Now, we can compare the above two matrices and equate the elements to get relations in (a, b, c). Hence, we can further write the above matrix as:
\[\left[ \begin{matrix}
{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}} & \text{ab+bc+ca} & \text{ab+bc+ca} \\
\text{ab+bc+ca} & {{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}} & \text{ab+bc+ca} \\
\text{ab+bc+ca} & \text{ab+bc+ca} & {{a}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}} \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]\]
Hence, we get two relations from above equations as
${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=1$ ………………. (v)
And
$ab+bc+ca=0$……………… (vi)
Now, we know the algebraic identity of ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc$ can be given as
${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)$
Or
$\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-\left( ab+bc+ca \right) \right)$…………..(vii)
Now, put the values of ${{a}^{2}}+{{b}^{2}}+{{c}^{2}},abc,ab+bc+ca$ from equation (v),(ii) and (vi) respectively in the equation (vii), hence, we get
${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3\left( 1 \right)=\left( a+b+c \right)\left( 1-0 \right)$
${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3+\left( a+b+c \right)$………..(viii)
Now, we can use value of a + b + c by using the algebraic identity
${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right)$
Now, using relation (v) and (vi), we can get value of $\left( a+b+c \right)$ as
$\begin{align}
& {{\left( a+b+c \right)}^{2}}=1+2\left( 0 \right) \\
& {{\left( a+b+c \right)}^{2}}=1 \\
\end{align}$
And hence,
$a+b+c=\pm 1$
As we already know the values of (a, b, c) are real and positive from the question, so, $a+b+c$ can never be ‘-1’. Hence, the value of (a + b + c) be ‘1’. Hence,
a + b + c = 1 ………….. (ix).
So, putting value of (a + b + c) in equation
(viii) to get the value of${{a}^{3}}+{{b}^{3}}+{{c}^{3}}$. Hence,we get
${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=3+1=4$
So,
${{a}^{3}}+{{b}^{3}}+{{c}^{3}}=4$
Note: One can go wrong with the algebraic identities ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc$ and ${{\left( a+b+c \right)}^{2}}$. So, identities should be very clear for solving these kinds of problems.
One may try calculate exact values of given relations i.e. abc = 1, ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}=1$and $ab+bc+ca=0$. So, one can think, we have three equations and three variables so, we can calculate exact values of a,b,c which is the wrong approach for getting value of ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}$. As, we don’t need exact values of a, b, c we need value of ${{a}^{3}}+{{b}^{3}}+{{c}^{3}}$, so try to relate the problem with the algebraic identities. Calculating values of (a, b, c) is the complex approach for these kinds of problems.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

