
Given A = $ {2^{65}} $ and B = $ \left( {{2^{64}} + {2^{63}} + {2^{62}} + ... + {2^0}} \right) $
a.B is $ {2^{64}} $ larger than A
b.A and B are equal
c.B is larger than A by 1
d.A is larger than B by 1
Answer
587.4k+ views
Hint: In the given question, ‘B’ is in Geometric Progression that is $ {{\text{S}}_{\text{n}}} = \left( {{{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} + ... + {{\text{a}}_{\text{n}}}} \right) $ where $ \dfrac{{{{\text{a}}_2}}}{{{{\text{a}}_1}}} $ gives the common ratio ‘r’. This question can be solved by solving ‘B’ using Sum to n numbers i.e., $ {{\text{S}}_{\text{n}}} = \left( {{{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} + ... + {{\text{a}}_{\text{n}}}} \right) = \dfrac{{{\text{a}}\left( {{{\text{r}}^{\text{n}}} - 1} \right)}}{{{\text{r}} - 1}} $ , r $ \ne $ 1. And then based on this, we can compare B with A. We cannot solve’ A’ further so we are solving ‘B’ here.
Complete step-by-step answer:
Given, A = $ {2^{65}} $ and B = $ \left( {{2^{64}} + {2^{63}} + {2^{62}} + ... + {2^0}} \right) $
From B = $ \left( {{2^{64}} + {2^{63}} + {2^{62}} + ... + {2^0}} \right) $ , we can simplify it further by using Sum to n numbers in Geometric Progression.
Sum to n numbers, $ {{\text{S}}_{\text{n}}} = \left( {{{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} + ... + {{\text{a}}_{\text{n}}}} \right) = \dfrac{{{\text{a}}\left( {{{\text{r}}^{\text{n}}} - 1} \right)}}{{{\text{r}} - 1}} $ , r $ \ne $ 1
Where, a= first term, r= common ratio, n= number of terms
$ \Rightarrow $ B = \[\left( {{2^0} + {2^1} + {2^2} + ... + {2^{64}}} \right)\]
Here, a= $ {2^0} $ , r= $ \dfrac{{{{\text{a}}_2}}}{{{{\text{a}}_1}}} = \dfrac{{{2^1}}}{{{2^0}}} = 2 $ and n= 65
$ \Rightarrow $ B = $ \dfrac{{{2^0}\left( {{2^{65}} - 1} \right)}}{{2 - 1}} = \dfrac{{{2^{65}} - 1}}{1} = {2^{65}} - 1 $
$ \Rightarrow $ B = A-1
(Since A = $ {2^{65}} $ )
Therefore, A is larger than B by 1
Note: The geometric sequence is sometimes called the geometric progression or GP, for short. Here in the above question we solved the sum to n numbers using $ {{\text{S}}_{\text{n}}} = \dfrac{{{\text{a}}\left( {{{\text{r}}^{\text{n}}} - 1} \right)}}{{{\text{r}} - 1}} $ , r $ \ne $ 1. But when n= $ \infty $ , that is when the number of terms are set to infinity, then we can solve Sum to infinity using $ {{\text{S}}_\infty } = \sum\limits_{{\text{n = 1}}}^\infty {{\text{a}}{{\text{r}}^{{\text{n - 1}}}} = \dfrac{{{{\text{a}}_1}}}{{1 - {\text{r}}}}} , - 1 < r < 1 $
Complete step-by-step answer:
Given, A = $ {2^{65}} $ and B = $ \left( {{2^{64}} + {2^{63}} + {2^{62}} + ... + {2^0}} \right) $
From B = $ \left( {{2^{64}} + {2^{63}} + {2^{62}} + ... + {2^0}} \right) $ , we can simplify it further by using Sum to n numbers in Geometric Progression.
Sum to n numbers, $ {{\text{S}}_{\text{n}}} = \left( {{{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} + ... + {{\text{a}}_{\text{n}}}} \right) = \dfrac{{{\text{a}}\left( {{{\text{r}}^{\text{n}}} - 1} \right)}}{{{\text{r}} - 1}} $ , r $ \ne $ 1
Where, a= first term, r= common ratio, n= number of terms
$ \Rightarrow $ B = \[\left( {{2^0} + {2^1} + {2^2} + ... + {2^{64}}} \right)\]
Here, a= $ {2^0} $ , r= $ \dfrac{{{{\text{a}}_2}}}{{{{\text{a}}_1}}} = \dfrac{{{2^1}}}{{{2^0}}} = 2 $ and n= 65
$ \Rightarrow $ B = $ \dfrac{{{2^0}\left( {{2^{65}} - 1} \right)}}{{2 - 1}} = \dfrac{{{2^{65}} - 1}}{1} = {2^{65}} - 1 $
$ \Rightarrow $ B = A-1
(Since A = $ {2^{65}} $ )
Therefore, A is larger than B by 1
Note: The geometric sequence is sometimes called the geometric progression or GP, for short. Here in the above question we solved the sum to n numbers using $ {{\text{S}}_{\text{n}}} = \dfrac{{{\text{a}}\left( {{{\text{r}}^{\text{n}}} - 1} \right)}}{{{\text{r}} - 1}} $ , r $ \ne $ 1. But when n= $ \infty $ , that is when the number of terms are set to infinity, then we can solve Sum to infinity using $ {{\text{S}}_\infty } = \sum\limits_{{\text{n = 1}}}^\infty {{\text{a}}{{\text{r}}^{{\text{n - 1}}}} = \dfrac{{{{\text{a}}_1}}}{{1 - {\text{r}}}}} , - 1 < r < 1 $
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

