
Given A = $ {2^{65}} $ and B = $ \left( {{2^{64}} + {2^{63}} + {2^{62}} + ... + {2^0}} \right) $
a.B is $ {2^{64}} $ larger than A
b.A and B are equal
c.B is larger than A by 1
d.A is larger than B by 1
Answer
601.2k+ views
Hint: In the given question, ‘B’ is in Geometric Progression that is $ {{\text{S}}_{\text{n}}} = \left( {{{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} + ... + {{\text{a}}_{\text{n}}}} \right) $ where $ \dfrac{{{{\text{a}}_2}}}{{{{\text{a}}_1}}} $ gives the common ratio ‘r’. This question can be solved by solving ‘B’ using Sum to n numbers i.e., $ {{\text{S}}_{\text{n}}} = \left( {{{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} + ... + {{\text{a}}_{\text{n}}}} \right) = \dfrac{{{\text{a}}\left( {{{\text{r}}^{\text{n}}} - 1} \right)}}{{{\text{r}} - 1}} $ , r $ \ne $ 1. And then based on this, we can compare B with A. We cannot solve’ A’ further so we are solving ‘B’ here.
Complete step-by-step answer:
Given, A = $ {2^{65}} $ and B = $ \left( {{2^{64}} + {2^{63}} + {2^{62}} + ... + {2^0}} \right) $
From B = $ \left( {{2^{64}} + {2^{63}} + {2^{62}} + ... + {2^0}} \right) $ , we can simplify it further by using Sum to n numbers in Geometric Progression.
Sum to n numbers, $ {{\text{S}}_{\text{n}}} = \left( {{{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} + ... + {{\text{a}}_{\text{n}}}} \right) = \dfrac{{{\text{a}}\left( {{{\text{r}}^{\text{n}}} - 1} \right)}}{{{\text{r}} - 1}} $ , r $ \ne $ 1
Where, a= first term, r= common ratio, n= number of terms
$ \Rightarrow $ B = \[\left( {{2^0} + {2^1} + {2^2} + ... + {2^{64}}} \right)\]
Here, a= $ {2^0} $ , r= $ \dfrac{{{{\text{a}}_2}}}{{{{\text{a}}_1}}} = \dfrac{{{2^1}}}{{{2^0}}} = 2 $ and n= 65
$ \Rightarrow $ B = $ \dfrac{{{2^0}\left( {{2^{65}} - 1} \right)}}{{2 - 1}} = \dfrac{{{2^{65}} - 1}}{1} = {2^{65}} - 1 $
$ \Rightarrow $ B = A-1
(Since A = $ {2^{65}} $ )
Therefore, A is larger than B by 1
Note: The geometric sequence is sometimes called the geometric progression or GP, for short. Here in the above question we solved the sum to n numbers using $ {{\text{S}}_{\text{n}}} = \dfrac{{{\text{a}}\left( {{{\text{r}}^{\text{n}}} - 1} \right)}}{{{\text{r}} - 1}} $ , r $ \ne $ 1. But when n= $ \infty $ , that is when the number of terms are set to infinity, then we can solve Sum to infinity using $ {{\text{S}}_\infty } = \sum\limits_{{\text{n = 1}}}^\infty {{\text{a}}{{\text{r}}^{{\text{n - 1}}}} = \dfrac{{{{\text{a}}_1}}}{{1 - {\text{r}}}}} , - 1 < r < 1 $
Complete step-by-step answer:
Given, A = $ {2^{65}} $ and B = $ \left( {{2^{64}} + {2^{63}} + {2^{62}} + ... + {2^0}} \right) $
From B = $ \left( {{2^{64}} + {2^{63}} + {2^{62}} + ... + {2^0}} \right) $ , we can simplify it further by using Sum to n numbers in Geometric Progression.
Sum to n numbers, $ {{\text{S}}_{\text{n}}} = \left( {{{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} + ... + {{\text{a}}_{\text{n}}}} \right) = \dfrac{{{\text{a}}\left( {{{\text{r}}^{\text{n}}} - 1} \right)}}{{{\text{r}} - 1}} $ , r $ \ne $ 1
Where, a= first term, r= common ratio, n= number of terms
$ \Rightarrow $ B = \[\left( {{2^0} + {2^1} + {2^2} + ... + {2^{64}}} \right)\]
Here, a= $ {2^0} $ , r= $ \dfrac{{{{\text{a}}_2}}}{{{{\text{a}}_1}}} = \dfrac{{{2^1}}}{{{2^0}}} = 2 $ and n= 65
$ \Rightarrow $ B = $ \dfrac{{{2^0}\left( {{2^{65}} - 1} \right)}}{{2 - 1}} = \dfrac{{{2^{65}} - 1}}{1} = {2^{65}} - 1 $
$ \Rightarrow $ B = A-1
(Since A = $ {2^{65}} $ )
Therefore, A is larger than B by 1
Note: The geometric sequence is sometimes called the geometric progression or GP, for short. Here in the above question we solved the sum to n numbers using $ {{\text{S}}_{\text{n}}} = \dfrac{{{\text{a}}\left( {{{\text{r}}^{\text{n}}} - 1} \right)}}{{{\text{r}} - 1}} $ , r $ \ne $ 1. But when n= $ \infty $ , that is when the number of terms are set to infinity, then we can solve Sum to infinity using $ {{\text{S}}_\infty } = \sum\limits_{{\text{n = 1}}}^\infty {{\text{a}}{{\text{r}}^{{\text{n - 1}}}} = \dfrac{{{{\text{a}}_1}}}{{1 - {\text{r}}}}} , - 1 < r < 1 $
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

