
Given $2x-3y+z-6=0$, how do you get a vector equation from this scalar or parametric equation?
Answer
544.5k+ views
Hint: We recall that the vector equation any plane is given by \[\left( \overrightarrow{r}-\overrightarrow{{{r}_{0}}} \right)\cdot \overrightarrow{n}=0\] where $\overrightarrow{r}$ is the variable vector $\overrightarrow{r}=x\hat{i}+y\hat{j}+z\hat{k}$ , $\overrightarrow{{{r}_{0}}}$ is the position vectors of any point on the plane and $\overrightarrow{n}$ is the unit normal vector to the given plane $P:2x-3y+z-6=0$. We first find the parametric equation with parameters $s,t$ and non-parallel vectors $\overrightarrow{u},\overrightarrow{v}$ as $\overrightarrow{r}=\overrightarrow{p}+s\overrightarrow{u}+t\overrightarrow{v}$.\[\]
Complete step by step answer:
We know that are give in the question the equation of plane in Cartesian form which we denote as
\[P:2x-3y+z-6=0\]
Here the scalars are $2,-3,6$. We know that the vector equation any plane is given by
\[\begin{align}
& \left( \overrightarrow{r}-\overrightarrow{{{r}_{0}}} \right)\cdot \overrightarrow{n}=0 \\
& \Rightarrow \overrightarrow{r}\cdot \overrightarrow{n}-\overrightarrow{{{r}_{0}}}\cdot \overrightarrow{n}=0 \\
\end{align}\]
Here $\overrightarrow{r}$ is the variable vector $\overrightarrow{r}=x\hat{i}+y\hat{j}+z\hat{k}$ , $\overrightarrow{{{r}_{0}}}$ is the position vectors of any point on the plane and $\overrightarrow{n}$ is the unit normal vector to the given plane. Since we have to use the parametric equation for $\overrightarrow{r}$to find the vector equation for $P$ we use two parameters $s,t$ and two vectors parallel with the plane $\overrightarrow{u},\overrightarrow{v}$ not parallel to each other and have;
\[\overrightarrow{r}=\overrightarrow{p}+s\overrightarrow{u}+t\overrightarrow{v}\]
Here $\overrightarrow{p}$ is any point vector on the plane $P$. We can put $x=0,y=0$ and find the p of the plane put in the equation of $P$ to have$2\cdot 0-3\cdot 0+z-6=0\Rightarrow z=6$. So we can write the position vector of $\overrightarrow{p}$ with unit orthogonal vectors $\hat{i},\hat{j},\hat{k}$
\[\overrightarrow{p}=0\cdot \hat{i}+0\hat{j}+6\hat{k}=6\hat{k}\]
Since $\overrightarrow{u}$ with component say $\overrightarrow{u}={{u}_{1}}\hat{i}+{{u}_{2}}\hat{j}+{{u}_{3}}\hat{k}$ is perpendicular with normal vector $\overrightarrow{n}$ we have $2{{u}_{1}}-3{{u}_{2}}+{{u}_{3}}=0$. We can choose arbitrarily ${{u}_{1}}=1,{{u}_{2}}=0$ to have ${{u}_{ 3}}=-2$.So we have
\[\overrightarrow{u}=1\cdot \hat{i}+0\hat{j}+\left( -2 \right)\hat{k}=\hat{i}-2\hat{k}\]
Similarly e $\overrightarrow{v}$ with component say $\overrightarrow{v}={{v}_{1}}\hat{i}+{{v}_{2}}\hat{j}+{{v}_{3}}\hat{k}$ is perpendicular with normal vector $\overrightarrow{n}$ we have $2{{v}_{1}}-3{{v}_{2}}+{{v}_{3}}=0$. We can choose arbitrarily ${{v}_{1}}=0,{{v}_{2}}=1$ to have ${{v}_{ 3}}=3$.So we have
\[\overrightarrow{s}=0\cdot \hat{i}+1\cdot \hat{j}+3\hat{k}=\hat{j}+3\hat{k}\]
Let us check where $\overrightarrow{n}$ will be perpendicular to $\overrightarrow{u},\overrightarrow{v}$ . We take the cross product of $\overrightarrow{u},\overrightarrow{v}$ to have;
\[\overrightarrow{u}\times \overrightarrow{v}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
1 & 0 & -2 \\
0 & 1 & 3 \\
\end{matrix} \right|=\hat{i}\left( 0-\left( -2 \right) \right)-\hat{j}\left( 3-0 \right)+\hat{k}\left( 1-0 \right)=2\overrightarrow{i}-3\hat{j}+\hat{k}\]
We know that the equation of a plane and the normal have the same coefficients. Here $P$ has coefficients $\left( 2,-3,4 \right)$ and its normal $\overrightarrow{n}$ will also have $\left( 2,-3,4 \right)$. So $\overrightarrow{u}\times \overrightarrow{v}$ is parallel to $\overrightarrow{n}$ and hence perpendicular to $\overrightarrow{u},\overrightarrow{v}$. So the required variable vector is
\[\begin{align}
& \overrightarrow{r}=\overrightarrow{p}+s\overrightarrow{u}+t\overrightarrow{v} \\
& \Rightarrow \overrightarrow{r}=6\hat{k}+s\left( \hat{i}-2\hat{k} \right)+t\left( \hat{j}+3\hat{k} \right) \\
\end{align}\]
So one possible vector equation of plane with $\overrightarrow{n}=2\hat{i}-3\hat{j}+\hat{k}$, any position vector $\overrightarrow{{{r}_{0}}}$ on $P$ and variable vector in parametric form $\overrightarrow{r}=6\hat{k}+s\left( \hat{i}-2\hat{k} \right)+t\left( \hat{j}+3\hat{k} \right)$ is
\[\overrightarrow{r}\cdot \overrightarrow{n}-\overrightarrow{{{r}_{0}}}\cdot \overrightarrow{n}=0\]
Note:
We note that the Cartesian equation of normal to the plane $ax+by+cz+d=0$ is given by $a\left( x-{{x}_{0}} \right)+b\left( y-{{y}_{0}} \right)+c\left( z-{{z}_{0}} \right)+d=0$ where $\left( {{x}_{0}},{{y}_{0}},{{z}_{0}} \right)$ is any point lying on the plane. We can alternatively write the parametric equation as $x=s,y=t,z=6-\dfrac{s}{3}+\dfrac{2t}{3}$. The perpendicular condition of two vectors $\overrightarrow{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k},\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ is given by ${{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}=0$ and the vector perpendicular to both of them is given by$\overrightarrow{a}\times \overrightarrow{b}$.
Complete step by step answer:
We know that are give in the question the equation of plane in Cartesian form which we denote as
\[P:2x-3y+z-6=0\]
Here the scalars are $2,-3,6$. We know that the vector equation any plane is given by
\[\begin{align}
& \left( \overrightarrow{r}-\overrightarrow{{{r}_{0}}} \right)\cdot \overrightarrow{n}=0 \\
& \Rightarrow \overrightarrow{r}\cdot \overrightarrow{n}-\overrightarrow{{{r}_{0}}}\cdot \overrightarrow{n}=0 \\
\end{align}\]
Here $\overrightarrow{r}$ is the variable vector $\overrightarrow{r}=x\hat{i}+y\hat{j}+z\hat{k}$ , $\overrightarrow{{{r}_{0}}}$ is the position vectors of any point on the plane and $\overrightarrow{n}$ is the unit normal vector to the given plane. Since we have to use the parametric equation for $\overrightarrow{r}$to find the vector equation for $P$ we use two parameters $s,t$ and two vectors parallel with the plane $\overrightarrow{u},\overrightarrow{v}$ not parallel to each other and have;
\[\overrightarrow{r}=\overrightarrow{p}+s\overrightarrow{u}+t\overrightarrow{v}\]
Here $\overrightarrow{p}$ is any point vector on the plane $P$. We can put $x=0,y=0$ and find the p of the plane put in the equation of $P$ to have$2\cdot 0-3\cdot 0+z-6=0\Rightarrow z=6$. So we can write the position vector of $\overrightarrow{p}$ with unit orthogonal vectors $\hat{i},\hat{j},\hat{k}$
\[\overrightarrow{p}=0\cdot \hat{i}+0\hat{j}+6\hat{k}=6\hat{k}\]
Since $\overrightarrow{u}$ with component say $\overrightarrow{u}={{u}_{1}}\hat{i}+{{u}_{2}}\hat{j}+{{u}_{3}}\hat{k}$ is perpendicular with normal vector $\overrightarrow{n}$ we have $2{{u}_{1}}-3{{u}_{2}}+{{u}_{3}}=0$. We can choose arbitrarily ${{u}_{1}}=1,{{u}_{2}}=0$ to have ${{u}_{ 3}}=-2$.So we have
\[\overrightarrow{u}=1\cdot \hat{i}+0\hat{j}+\left( -2 \right)\hat{k}=\hat{i}-2\hat{k}\]
Similarly e $\overrightarrow{v}$ with component say $\overrightarrow{v}={{v}_{1}}\hat{i}+{{v}_{2}}\hat{j}+{{v}_{3}}\hat{k}$ is perpendicular with normal vector $\overrightarrow{n}$ we have $2{{v}_{1}}-3{{v}_{2}}+{{v}_{3}}=0$. We can choose arbitrarily ${{v}_{1}}=0,{{v}_{2}}=1$ to have ${{v}_{ 3}}=3$.So we have
\[\overrightarrow{s}=0\cdot \hat{i}+1\cdot \hat{j}+3\hat{k}=\hat{j}+3\hat{k}\]
Let us check where $\overrightarrow{n}$ will be perpendicular to $\overrightarrow{u},\overrightarrow{v}$ . We take the cross product of $\overrightarrow{u},\overrightarrow{v}$ to have;
\[\overrightarrow{u}\times \overrightarrow{v}=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
1 & 0 & -2 \\
0 & 1 & 3 \\
\end{matrix} \right|=\hat{i}\left( 0-\left( -2 \right) \right)-\hat{j}\left( 3-0 \right)+\hat{k}\left( 1-0 \right)=2\overrightarrow{i}-3\hat{j}+\hat{k}\]
We know that the equation of a plane and the normal have the same coefficients. Here $P$ has coefficients $\left( 2,-3,4 \right)$ and its normal $\overrightarrow{n}$ will also have $\left( 2,-3,4 \right)$. So $\overrightarrow{u}\times \overrightarrow{v}$ is parallel to $\overrightarrow{n}$ and hence perpendicular to $\overrightarrow{u},\overrightarrow{v}$. So the required variable vector is
\[\begin{align}
& \overrightarrow{r}=\overrightarrow{p}+s\overrightarrow{u}+t\overrightarrow{v} \\
& \Rightarrow \overrightarrow{r}=6\hat{k}+s\left( \hat{i}-2\hat{k} \right)+t\left( \hat{j}+3\hat{k} \right) \\
\end{align}\]
So one possible vector equation of plane with $\overrightarrow{n}=2\hat{i}-3\hat{j}+\hat{k}$, any position vector $\overrightarrow{{{r}_{0}}}$ on $P$ and variable vector in parametric form $\overrightarrow{r}=6\hat{k}+s\left( \hat{i}-2\hat{k} \right)+t\left( \hat{j}+3\hat{k} \right)$ is
\[\overrightarrow{r}\cdot \overrightarrow{n}-\overrightarrow{{{r}_{0}}}\cdot \overrightarrow{n}=0\]
Note:
We note that the Cartesian equation of normal to the plane $ax+by+cz+d=0$ is given by $a\left( x-{{x}_{0}} \right)+b\left( y-{{y}_{0}} \right)+c\left( z-{{z}_{0}} \right)+d=0$ where $\left( {{x}_{0}},{{y}_{0}},{{z}_{0}} \right)$ is any point lying on the plane. We can alternatively write the parametric equation as $x=s,y=t,z=6-\dfrac{s}{3}+\dfrac{2t}{3}$. The perpendicular condition of two vectors $\overrightarrow{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k},\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ is given by ${{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}=0$ and the vector perpendicular to both of them is given by$\overrightarrow{a}\times \overrightarrow{b}$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

