
Give four rational numbers equivalent to: $\dfrac{4}{9}$
Answer
608.4k+ views
Hint: Rational numbers can always be multiplied by a common factor in the numerator and denominator to give another rational number that, on reducing, gives back the original rational number.
Complete step-by-step answer:
You’re all familiar with the way we reduce fractions that have a common factor in the numerator and denominator, to its simplest form, to get the simplest rational number that we can obtain from that original fraction, one where the HCF of the numerator and denominator is essentially equal to $1$. Such a fraction can’t be reduced to a simpler form.
Now, let’s analyse the fraction given to us. It’s equal to $\dfrac{4}{9}$. Let’s find the HCF of the numerator and denominator and know if the fraction provided can be reduced further, to a simpler form. The numerator is equal to $4$, and the denominator is equal to $9$, and the HCF of these two numbers, will obviously be equal to $1$, since they don’t have any common factors. To elaborate, the factors of $4$ are $1,2,4$ and that of $9$ are $1,3,9$. As you can see, the only factor common to the numerator and the denominator is $1$. Hence, this is the simplest form.
But, we still have to find four rational numbers that are equal to $\dfrac{4}{9}$. To find them, let’s back calculate and multiply the numerator and denominator with the same factors, to essentially find a non-reduced form of the same fraction.
Thus, let’s multiply the numerator and denominator with $2$ first. Doing so, we get $\dfrac{4.2}{9.2}=\dfrac{8}{18}$. $\dfrac{8}{18}$ is considered a new rational number, but one whose value is essentially equal to $\dfrac{4}{9}$ only.
Next, let’s multiply the numerator and denominator with $3$. Doing so, the new rational number we get will be equal to $\dfrac{4.3}{9.3}=\dfrac{12}{27}$. Thus, we have the second rational number equal to $\dfrac{4}{9}$.
Next, let’s multiply the numerator and denominator with $4$. Doing so, the new rational number we’ll get is $\dfrac{4.4}{9.4}=\dfrac{16}{36}$. Thus, we have the third rational number equal to $\dfrac{4}{9}$.
Lastly, let’s the numerator and denominator with $5$. Doing so, we’ll finally get the fourth rational number equal to $\dfrac{4}{9}$, which is equal to $\dfrac{4.5}{9.5}=\dfrac{20}{45}$.
Thus, we have four rational numbers that are equal to $\dfrac{4}{9}$, and they are : $\dfrac{8}{18},\dfrac{12}{27},\dfrac{16}{36},\dfrac{20}{45}$.
Note: You can multiply the numerator and denominator with numbers apart from these as well. Even then, you’ll get four rational numbers that are equal to $\dfrac{4}{9}$, just, they’ll not be the same as the ones we found out. Rational numbers are any number that can be written in the form of a fraction, or in the form $\dfrac{p}{q}$.
Complete step-by-step answer:
You’re all familiar with the way we reduce fractions that have a common factor in the numerator and denominator, to its simplest form, to get the simplest rational number that we can obtain from that original fraction, one where the HCF of the numerator and denominator is essentially equal to $1$. Such a fraction can’t be reduced to a simpler form.
Now, let’s analyse the fraction given to us. It’s equal to $\dfrac{4}{9}$. Let’s find the HCF of the numerator and denominator and know if the fraction provided can be reduced further, to a simpler form. The numerator is equal to $4$, and the denominator is equal to $9$, and the HCF of these two numbers, will obviously be equal to $1$, since they don’t have any common factors. To elaborate, the factors of $4$ are $1,2,4$ and that of $9$ are $1,3,9$. As you can see, the only factor common to the numerator and the denominator is $1$. Hence, this is the simplest form.
But, we still have to find four rational numbers that are equal to $\dfrac{4}{9}$. To find them, let’s back calculate and multiply the numerator and denominator with the same factors, to essentially find a non-reduced form of the same fraction.
Thus, let’s multiply the numerator and denominator with $2$ first. Doing so, we get $\dfrac{4.2}{9.2}=\dfrac{8}{18}$. $\dfrac{8}{18}$ is considered a new rational number, but one whose value is essentially equal to $\dfrac{4}{9}$ only.
Next, let’s multiply the numerator and denominator with $3$. Doing so, the new rational number we get will be equal to $\dfrac{4.3}{9.3}=\dfrac{12}{27}$. Thus, we have the second rational number equal to $\dfrac{4}{9}$.
Next, let’s multiply the numerator and denominator with $4$. Doing so, the new rational number we’ll get is $\dfrac{4.4}{9.4}=\dfrac{16}{36}$. Thus, we have the third rational number equal to $\dfrac{4}{9}$.
Lastly, let’s the numerator and denominator with $5$. Doing so, we’ll finally get the fourth rational number equal to $\dfrac{4}{9}$, which is equal to $\dfrac{4.5}{9.5}=\dfrac{20}{45}$.
Thus, we have four rational numbers that are equal to $\dfrac{4}{9}$, and they are : $\dfrac{8}{18},\dfrac{12}{27},\dfrac{16}{36},\dfrac{20}{45}$.
Note: You can multiply the numerator and denominator with numbers apart from these as well. Even then, you’ll get four rational numbers that are equal to $\dfrac{4}{9}$, just, they’ll not be the same as the ones we found out. Rational numbers are any number that can be written in the form of a fraction, or in the form $\dfrac{p}{q}$.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

What are gulf countries and why they are called Gulf class 8 social science CBSE


