
How do you get the exact value of $ {{\csc }^{-1}}\left( 2 \right) $ ?
Answer
543.3k+ views
Hint: We convert the inverse function from $ {{\csc }^{-1}}\left( x \right) $ to $ {{\sin }^{-1}}\left( \dfrac{1}{x} \right) $ . Then we explain the function $ \arcsin \left( x \right) $ . We express the inverse function of sin in the form of $ \arcsin \left( x \right)={{\sin }^{-1}}x $ . We draw the graph of $ \arcsin \left( x \right) $ and the line $ x=\dfrac{1}{2} $ to find the intersection point as the solution.
Complete step-by-step answer:
First, we convert the inverse function from $ {{\csc }^{-1}}\left( x \right) $ to $ {{\sin }^{-1}}\left( \dfrac{1}{x} \right) $ .
We know that $ {{\csc }^{-1}}\left( x \right)={{\sin }^{-1}}\left( \dfrac{1}{x} \right) $ . The condition is $ x>0 $ .
For our problem value of $ x $ is 2 which is greater than 0. So, $ {{\csc }^{-1}}\left( 2 \right)={{\sin }^{-1}}\left( \dfrac{1}{2} \right) $ .
The arcus function represents the angle which on ratio sin gives the value.
So, $ \arcsin \left( x \right)={{\sin }^{-1}}x $ . If \[\arcsin \left( x \right)={{\sin }^{-1}}x=\alpha \] then we can say $ \sin \alpha =x $ .
Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of $ 2\pi $ .
The general solution for that value where $ \sin \alpha =x $ will be $ n\pi \pm {{\left( -1 \right)}^{n}}\alpha ,n\in \mathbb{Z} $ .
But for $ \arcsin \left( x \right) $ , we won’t find the general solution. We use the principal value. For ratios sin we have $ -\dfrac{\pi }{2}\le \arcsin \left( x \right)\le \dfrac{\pi }{2} $ .
We now place the value of $ x=\dfrac{1}{2} $ in the function of $ \arcsin \left( x \right) $ .
Let the angle be $ \theta $ for which $ \arcsin \left( \dfrac{1}{2} \right)=\theta $ . This gives $ \sin \theta =\dfrac{1}{2} $ .
We know that $ \sin \theta =\dfrac{1}{2}=\sin \left( \dfrac{\pi }{6} \right) $ which gives $ \theta =\dfrac{\pi }{6} $
We get the value of y coordinates as $ \dfrac{\pi }{6} $ . Therefore, the exact value of $ {{\csc }^{-1}}\left( 2 \right) $ is $ \dfrac{\pi }{6} $ .
So, the correct answer is “ $ \dfrac{\pi }{6} $ ”.
Note: If we are finding an $ \arcsin \left( x \right) $ of a positive value, the answer is between $ 0\le \arcsin \left( x \right)\le \dfrac{\pi }{2} $ . If we are finding the $ \arcsin \left( x \right) $ of a negative value, the answer is between $ -\dfrac{\pi }{2}\le \arccos \left( x \right)\le 0 $ .
Complete step-by-step answer:
First, we convert the inverse function from $ {{\csc }^{-1}}\left( x \right) $ to $ {{\sin }^{-1}}\left( \dfrac{1}{x} \right) $ .
We know that $ {{\csc }^{-1}}\left( x \right)={{\sin }^{-1}}\left( \dfrac{1}{x} \right) $ . The condition is $ x>0 $ .
For our problem value of $ x $ is 2 which is greater than 0. So, $ {{\csc }^{-1}}\left( 2 \right)={{\sin }^{-1}}\left( \dfrac{1}{2} \right) $ .
The arcus function represents the angle which on ratio sin gives the value.
So, $ \arcsin \left( x \right)={{\sin }^{-1}}x $ . If \[\arcsin \left( x \right)={{\sin }^{-1}}x=\alpha \] then we can say $ \sin \alpha =x $ .
Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of $ 2\pi $ .
The general solution for that value where $ \sin \alpha =x $ will be $ n\pi \pm {{\left( -1 \right)}^{n}}\alpha ,n\in \mathbb{Z} $ .
But for $ \arcsin \left( x \right) $ , we won’t find the general solution. We use the principal value. For ratios sin we have $ -\dfrac{\pi }{2}\le \arcsin \left( x \right)\le \dfrac{\pi }{2} $ .
We now place the value of $ x=\dfrac{1}{2} $ in the function of $ \arcsin \left( x \right) $ .
Let the angle be $ \theta $ for which $ \arcsin \left( \dfrac{1}{2} \right)=\theta $ . This gives $ \sin \theta =\dfrac{1}{2} $ .
We know that $ \sin \theta =\dfrac{1}{2}=\sin \left( \dfrac{\pi }{6} \right) $ which gives $ \theta =\dfrac{\pi }{6} $
We get the value of y coordinates as $ \dfrac{\pi }{6} $ . Therefore, the exact value of $ {{\csc }^{-1}}\left( 2 \right) $ is $ \dfrac{\pi }{6} $ .
So, the correct answer is “ $ \dfrac{\pi }{6} $ ”.
Note: If we are finding an $ \arcsin \left( x \right) $ of a positive value, the answer is between $ 0\le \arcsin \left( x \right)\le \dfrac{\pi }{2} $ . If we are finding the $ \arcsin \left( x \right) $ of a negative value, the answer is between $ -\dfrac{\pi }{2}\le \arccos \left( x \right)\le 0 $ .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

