
What is the fundamental period of $ f\left( x \right) = \dfrac{{\sin x + \sin 3x}}{{\cos x + \cos 3x}} $ ?
A. $ \dfrac{\pi }{2} $
B. $ \pi $
C. $ 2\pi $
D. $ 3\pi $
Answer
484.8k+ views
Hint: The fundamental period of a function is the minimum time period after which a function repeats its value. So clearly, in this question we need to find the minimum time period after which $ f\left( x \right) $ will repeat its value. To find the fundamental period of $ f\left( x \right) $ you must know that the period of $ \sin x $ and $ \cos x $ is $ 2\pi $ .
Complete step-by-step answer:
Given function: $ f\left( x \right) = \dfrac{{\sin x + \sin 3x}}{{\cos x + \cos 3x}} $
In the given function Putting $ x \to \pi + x $ , we get
$ \Rightarrow f\left( {\pi + x} \right) = \dfrac{{\sin \left( {\pi + x} \right) + \sin 3\left( {\pi + x} \right)}}{{\cos \left( {\pi + x} \right) + \cos 3\left( {\pi + x} \right)}} $
We know that $ \sin (\pi + x) = - \sin (x) $ and $ \cos (\pi + x) = - \cos x $ . Putting these values, we get
$ \Rightarrow f\left( {\pi + x} \right) = \dfrac{{ - \sin x + \sin \left( {3\pi + 3x} \right)}}{{ - \cos x + \cos \left( {3\pi + 3x} \right)}} $
We also know that $ \sin (3\pi + 3x) = - \sin (3x) $ and $ \cos (3\pi + 3x) = - \cos 3x $ . Putting these values, we get
$ \Rightarrow f\left( {\pi + x} \right) = \dfrac{{ - \sin x - \sin 3x}}{{ - \cos x - \cos 3x}} $
Multiplying numerator and denominator by (-1), we get
$ \Rightarrow f\left( {\pi + x} \right) = \dfrac{{\sin x + \sin 3x}}{{\cos x + \cos 3x}} $
The obtained function in the right hand side is equal to $ f(x) $ , which means $ f(x) $ repeats its value after every $ \pi $ interval. Hence, $ \pi $ will be the fundamental period of a given function.
So, the correct answer is “ $ \pi $ ”.
Note: : The period of addition of two periodic functions is the L.C.M. of periods of those two functions.
Alternatively, in these types of questions we can also use the hit and trial method by putting given options. After putting which option the obtained function is equal to the original function, that would be the fundamental period of the function.
Complete step-by-step answer:
Given function: $ f\left( x \right) = \dfrac{{\sin x + \sin 3x}}{{\cos x + \cos 3x}} $
In the given function Putting $ x \to \pi + x $ , we get
$ \Rightarrow f\left( {\pi + x} \right) = \dfrac{{\sin \left( {\pi + x} \right) + \sin 3\left( {\pi + x} \right)}}{{\cos \left( {\pi + x} \right) + \cos 3\left( {\pi + x} \right)}} $
We know that $ \sin (\pi + x) = - \sin (x) $ and $ \cos (\pi + x) = - \cos x $ . Putting these values, we get
$ \Rightarrow f\left( {\pi + x} \right) = \dfrac{{ - \sin x + \sin \left( {3\pi + 3x} \right)}}{{ - \cos x + \cos \left( {3\pi + 3x} \right)}} $
We also know that $ \sin (3\pi + 3x) = - \sin (3x) $ and $ \cos (3\pi + 3x) = - \cos 3x $ . Putting these values, we get
$ \Rightarrow f\left( {\pi + x} \right) = \dfrac{{ - \sin x - \sin 3x}}{{ - \cos x - \cos 3x}} $
Multiplying numerator and denominator by (-1), we get
$ \Rightarrow f\left( {\pi + x} \right) = \dfrac{{\sin x + \sin 3x}}{{\cos x + \cos 3x}} $
The obtained function in the right hand side is equal to $ f(x) $ , which means $ f(x) $ repeats its value after every $ \pi $ interval. Hence, $ \pi $ will be the fundamental period of a given function.
So, the correct answer is “ $ \pi $ ”.
Note: : The period of addition of two periodic functions is the L.C.M. of periods of those two functions.
Alternatively, in these types of questions we can also use the hit and trial method by putting given options. After putting which option the obtained function is equal to the original function, that would be the fundamental period of the function.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

