
From the sum of \[3{x^3} + 7{x^2} - 5x + 1\] and \[5{x^3} - 9{x^2} + 7x - 2\] subtract \[ - 6{x^3} + 2{x^2} - 6x - 8\]
Answer
584.1k+ views
Hint: Here we add the two given polynomials by adding the coefficients of the respective terms in the polynomials. Subtract the third polynomial from the sum obtained by subtracting the coefficients of the respective terms.
Complete step-by-step answer:
We are given three polynomials
\[3{x^3} + 7{x^2} - 5x + 1\]..........… (1)
\[5{x^3} - 9{x^2} + 7x - 2\]...........… (2)
\[ - 6{x^3} + 2{x^2} - 6x - 8\]...........… (3)
Firstly, take sum of equation (1) and equation (2)
Adding the two polynomials in equation (1) and (2) we get
\[ \Rightarrow \left( {3{x^3} + 7{x^2} - 5x + 1} \right) + \left( {5{x^3} - 9{x^2} + 7x - 2} \right)\]
Combine the terms with same variables
\[ \Rightarrow \left( {3{x^3} + 5{x^3}} \right) + \left( {7{x^2} - 9{x^2}} \right) + \left( { - 5x + 7x} \right) + \left( { - 2 + 1} \right)\]
Take the variable common from the bracket and add the values in the bracket.
\[ \Rightarrow \left( {3 + 5} \right){x^3} + \left( {7 - 9} \right){x^2} + \left( { - 5 + 7} \right)x + \left( { - 2 + 1} \right)\]
\[ \Rightarrow 8{x^3} + ( - 2){x^2} + 2x + ( - 1)\]
Multiply the signs of plus and minus to write minus
\[ \Rightarrow 8{x^3} - 2{x^2} + 2x - 1\]............… (4)
Equation (4) is the added polynomial obtained by adding equations (1) and (2)
Secondly, subtract equation (3) from equation (4)
Subtracting polynomial from equation (3) from polynomial in equation (4) we get
\[ \Rightarrow \left( {8{x^3} - 2{x^2} + 2x - 1} \right) - \left( { - 6{x^3} + 2{x^2} - 6x - 8} \right)\]
Combine the terms with same variables
\[ \Rightarrow \left( {8{x^3} - ( - 6{x^3})} \right) + \left( { - 2{x^2} - 2{x^2}} \right) + \left( {2x - ( - 6x)} \right) + \left( { - 1 - ( - 8)} \right)\]
We write the product of two negative signs as positive sign
\[ \Rightarrow \left( {8{x^3} + 6{x^3}} \right) + \left( { - 2{x^2} - 2{x^2}} \right) + \left( {2x + 6x} \right) + \left( { - 1 + 8} \right)\]
Take the variable common from the bracket and solve the values in the bracket.
\[ \Rightarrow \left( {8 + 6} \right){x^3} + \left( { - 2 - 2} \right){x^2} + \left( {2 + 6} \right)x + \left( { - 1 + 8} \right)\]
\[ \Rightarrow 14{x^3} + ( - 4{x^2}) + 8x + 7\]
Multiply the signs of plus and minus to write minus
\[ \Rightarrow 14{x^3} - 4{x^2} + 8x + 7\]
Therefore the final polynomial we get after subtracting \[ - 6{x^3} + 2{x^2} - 6x - 8\] from the sum of \[3{x^3} + 7{x^2} - 5x + 1\] and \[5{x^3} - 9{x^2} + 7x - 2\] is\[14{x^3} - 4{x^2} + 8x + 7\].
Note: * A polynomial is an expression with variables and coefficients. General form of a polynomial is given by \[p(x) = a{x^n} + b{x^{n - 1}} + c{x^{n - 2}}.....\] where a, b, c … are the coefficients of the variables \[{x^n},{x^{n - 1}},{x^{n - 2}}\]…
Complete step-by-step answer:
We are given three polynomials
\[3{x^3} + 7{x^2} - 5x + 1\]..........… (1)
\[5{x^3} - 9{x^2} + 7x - 2\]...........… (2)
\[ - 6{x^3} + 2{x^2} - 6x - 8\]...........… (3)
Firstly, take sum of equation (1) and equation (2)
Adding the two polynomials in equation (1) and (2) we get
\[ \Rightarrow \left( {3{x^3} + 7{x^2} - 5x + 1} \right) + \left( {5{x^3} - 9{x^2} + 7x - 2} \right)\]
Combine the terms with same variables
\[ \Rightarrow \left( {3{x^3} + 5{x^3}} \right) + \left( {7{x^2} - 9{x^2}} \right) + \left( { - 5x + 7x} \right) + \left( { - 2 + 1} \right)\]
Take the variable common from the bracket and add the values in the bracket.
\[ \Rightarrow \left( {3 + 5} \right){x^3} + \left( {7 - 9} \right){x^2} + \left( { - 5 + 7} \right)x + \left( { - 2 + 1} \right)\]
\[ \Rightarrow 8{x^3} + ( - 2){x^2} + 2x + ( - 1)\]
Multiply the signs of plus and minus to write minus
\[ \Rightarrow 8{x^3} - 2{x^2} + 2x - 1\]............… (4)
Equation (4) is the added polynomial obtained by adding equations (1) and (2)
Secondly, subtract equation (3) from equation (4)
Subtracting polynomial from equation (3) from polynomial in equation (4) we get
\[ \Rightarrow \left( {8{x^3} - 2{x^2} + 2x - 1} \right) - \left( { - 6{x^3} + 2{x^2} - 6x - 8} \right)\]
Combine the terms with same variables
\[ \Rightarrow \left( {8{x^3} - ( - 6{x^3})} \right) + \left( { - 2{x^2} - 2{x^2}} \right) + \left( {2x - ( - 6x)} \right) + \left( { - 1 - ( - 8)} \right)\]
We write the product of two negative signs as positive sign
\[ \Rightarrow \left( {8{x^3} + 6{x^3}} \right) + \left( { - 2{x^2} - 2{x^2}} \right) + \left( {2x + 6x} \right) + \left( { - 1 + 8} \right)\]
Take the variable common from the bracket and solve the values in the bracket.
\[ \Rightarrow \left( {8 + 6} \right){x^3} + \left( { - 2 - 2} \right){x^2} + \left( {2 + 6} \right)x + \left( { - 1 + 8} \right)\]
\[ \Rightarrow 14{x^3} + ( - 4{x^2}) + 8x + 7\]
Multiply the signs of plus and minus to write minus
\[ \Rightarrow 14{x^3} - 4{x^2} + 8x + 7\]
Therefore the final polynomial we get after subtracting \[ - 6{x^3} + 2{x^2} - 6x - 8\] from the sum of \[3{x^3} + 7{x^2} - 5x + 1\] and \[5{x^3} - 9{x^2} + 7x - 2\] is\[14{x^3} - 4{x^2} + 8x + 7\].
Note: * A polynomial is an expression with variables and coefficients. General form of a polynomial is given by \[p(x) = a{x^n} + b{x^{n - 1}} + c{x^{n - 2}}.....\] where a, b, c … are the coefficients of the variables \[{x^n},{x^{n - 1}},{x^{n - 2}}\]…
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE


