
From a point on the horizontal plane, the elevation of the top of a hill is \[{{45}^{\circ }}.\] After walking 500m in towards its summit up a slope inclined at an angle of \[{{15}^{\circ }}\] to the horizon, the elevation is \[{{75}^{\circ }},\] the height of the hill is:
\[\left( a \right)500\sqrt{6}m\]
\[\left( b \right)500\sqrt{3}m\]
\[\left( c \right)250\sqrt{6}m\]
\[\left( d \right)250\sqrt{3}m\]
Answer
484.5k+ views
Hint: First of all draw a figure according to the information given in the question. Then we will use the suitable trigonometric ratios like \[\sin {{30}^{\circ }},\cos {{30}^{\circ }},\sin {{45}^{\circ }},\cos {{45}^{\circ }},etc.\] to get the required value.
Complete step by step answer:
In this question, we are given that from a point on the horizontal plane, the elevation of the top of a hill is \[{{45}^{\circ }}.\] After walking 500m in towards its summit up a slope inclined at an angle of \[{{15}^{\circ }}\] to the horizon, the elevation is \[{{75}^{\circ }}.\] And we have to find the value of the height of the hill.
Let us first draw a figure according to the given information.
In the above figure, we have assumed that
AC is the height of the hill
\[\angle AEC={{45}^{\circ }}=\text{ the angle of elevation of the top of the hill}\]
\[\angle FED={{15}^{\circ }}=\text{ the angle of inclination of the slope to the horizontal}\]
EF = 500m = distance of the slope
\[\angle AFB={{75}^{\circ }}=\text{ the angle of elevation after walking 500m up the slope}\]
Let us consider triangle FDE from the figure. We know that \[\sin \theta =\dfrac{\text{perpendicular}}{\text{hypotenuse}}.\] By using these, we get,
\[\sin {{15}^{\circ }}=\dfrac{FD}{EF}.....\left( i \right)\]
We can write \[\sin {{15}^{\circ }}=\sin \left( {{45}^{\circ }}-{{30}^{\circ }} \right).\]
We know that sin (A – B) = sin A cos B – cos A sin B. By using this, we get,
\[\Rightarrow \sin {{15}^{\circ }}=\sin {{45}^{\circ }}\cos {{30}^{\circ }}-\cos {{45}^{\circ }}\sin {{30}^{\circ }}\]
From the table of trigonometric ratios of standard angles, we know that,
\[\sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}}\]
\[\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}\]
\[\sin {{30}^{\circ }}=\dfrac{1}{2}\]
By using this, we get,
\[\Rightarrow \sin {{15}^{\circ }}=\dfrac{1}{\sqrt{2}}.\dfrac{\sqrt{3}}{2}-\dfrac{1}{\sqrt{2}}.\dfrac{1}{2}\]
\[\Rightarrow \sin {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{2\sqrt{2}}\]
By substituting the value of \[\sin {{15}^{\circ }}\] in equation (i), we get,
\[\Rightarrow \dfrac{\sqrt{3}-1}{2\sqrt{2}}=\dfrac{FD}{EF}\]
From the figure, we know that EF = 500m. So, we get,
\[\Rightarrow \dfrac{\sqrt{3}-1}{2\sqrt{2}}=\dfrac{FD}{500}\]
\[\Rightarrow FD=\dfrac{\sqrt{3}-1}{2\sqrt{2}}\times 500\]
\[\Rightarrow FD=250\left( \dfrac{\sqrt{3}-1}{\sqrt{2}} \right)m......\left( ii \right)\]
We also know that \[\cos \theta =\dfrac{\text{base}}{\text{hypotenuse}}.\]
So, in triangle FDE, we get, \[\cos {{15}^{\circ }}=\dfrac{ED}{EF}.\]
In the similar way, we get \[\cos {{15}^{\circ }}=\dfrac{\sqrt{3}+1}{2\sqrt{2}}.\] So, we get,
\[\Rightarrow \dfrac{ED}{EF}=\dfrac{\sqrt{3}+1}{2\sqrt{2}}\]
We know that EF = 500m. So, we get,
\[\Rightarrow \dfrac{\sqrt{3}+1}{2\sqrt{2}}=\dfrac{ED}{500}\]
So, we get,
\[\Rightarrow ED=\left( 500 \right)\left[ \dfrac{\sqrt{3}+1}{2\sqrt{2}} \right]\]
\[\Rightarrow ED=\left( 250 \right)\left( \dfrac{\sqrt{3}+1}{\sqrt{2}} \right)m......\left( iii \right)\]
Now let us consider triangle ACE, we know that \[\tan \theta =\dfrac{\text{perpendicular }}{\text{base}}.\]
So, we get \[\tan {{45}^{\circ }}=\dfrac{AC}{EC}.\] We know that \[\tan {{45}^{\circ }}=1.\] So, we get,
\[1=\dfrac{AC}{EC}\]
\[AC=EC......\left( iv \right)\]
Now, let us consider triangle ABF, we get,
\[\tan {{75}^{\circ }}=\dfrac{AB}{BF}.....\left( v \right)\]
We can write \[\tan {{75}^{\circ }}=\tan \left( {{45}^{\circ }}+{{30}^{\circ }} \right).\]
We also know that, \[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}.\]
By using this formula, we get,
\[\tan {{75}^{\circ }}=\dfrac{\tan {{45}^{\circ }}+\tan {{30}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{30}^{\circ }}}\]
We know that \[\tan {{45}^{\circ }}=1\] and \[\tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}}.\] So, we get,
\[\Rightarrow \tan {{75}^{\circ }}=\dfrac{1+\dfrac{1}{\sqrt{3}}}{1-\dfrac{1}{\sqrt{3}}}\]
\[\Rightarrow \tan {{75}^{\circ }}=\dfrac{\left( \sqrt{3}+1 \right)}{\left( \sqrt{3}-1 \right)}\times \dfrac{\left( \sqrt{3}+1 \right)}{\left( \sqrt{3}+1 \right)}\]
\[\Rightarrow \tan {{75}^{\circ }}=2+\sqrt{3}\]
By substituting the value of \[\tan {{75}^{\circ }}\] in equation (v), we get,
\[\Rightarrow \left( 2+\sqrt{3} \right)=\dfrac{AB}{BF}\]
From the figure, we can also write the above equation as
\[\Rightarrow \left( 2+\sqrt{3} \right)=\dfrac{AC-BC}{BF}\]
From the figure, we can see that BF = CD and FD = BC. So, we get,
\[\Rightarrow \left( 2+\sqrt{3} \right)=\dfrac{AC-BC}{CD}\]
\[\Rightarrow \left( 2+\sqrt{3} \right)=\dfrac{AC-BC}{EC-ED}\]
By substituting the values of BC, ED and EC from equation (ii), (iii) and (iv) respectively, we get,
\[\Rightarrow \left( 2+\sqrt{3} \right)=\dfrac{AC-250\left( \dfrac{\sqrt{3}-1}{\sqrt{2}} \right)}{AC-250\left( \dfrac{\sqrt{3}+1}{\sqrt{2}} \right)}\]
\[\Rightarrow \left( 2+\sqrt{3} \right)=\dfrac{\sqrt{2}AC-250\left( \sqrt{3}-1 \right)}{\sqrt{2}AC-250\left( \sqrt{3}+1 \right)}\]
By cross multiplying the above equation, we get,
\[\Rightarrow \left( 2+\sqrt{3} \right)\left( \sqrt{2}AC-250\left( \sqrt{3}+1 \right) \right)=\left[ \sqrt{2}AC-250\left( \sqrt{3}-1 \right) \right]\]
\[\Rightarrow 2\sqrt{2}AC-500\left( \sqrt{3}+1 \right)+\sqrt{6}AC-250\sqrt{3}\left( \sqrt{3}+1 \right)=\sqrt{2}AC-250\left( \sqrt{3}-1 \right)\]
By taking all the constant terms to the RHS, we get,
\[\Rightarrow 2\sqrt{2}AC+\sqrt{6}AC-\sqrt{2}AC=500\left( \sqrt{3}+1 \right)+250\sqrt{3}\left( \sqrt{3}+1 \right)-250\left( \sqrt{3}-1 \right)\]
\[\Rightarrow AC\left( 2\sqrt{2}+\sqrt{6}-\sqrt{2} \right)=500\sqrt{3}+500+750+250\sqrt{3}-250\sqrt{3}+250\]
By cancelling the opposite terms, we get,
\[\Rightarrow AC\left( \sqrt{2}+\sqrt{6} \right)=500\sqrt{3}+1500\]
\[\Rightarrow AC\sqrt{2}\left( 1+\sqrt{3} \right)=500\sqrt{3}\left( 1+\sqrt{3} \right)\]
\[\Rightarrow AC=\dfrac{500\sqrt{3}\left( 1+\sqrt{3} \right)}{\sqrt{2}\left( 1+\sqrt{3} \right)}\]
By cancelling the like terms and multiplying \[\sqrt{2}\] on both the numerator and denominator, we get,
\[\Rightarrow AC=\dfrac{500\sqrt{6}}{2}\]
\[\Rightarrow AC=250\sqrt{6}m\]
So, the correct answer is “Option c”.
Note: In these types of questions, it is very important to draw the figure to clearly visualize the question and use it in the solution wherever necessary. Also, students must remember the trigonometric ratios of the standard angles like \[{{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }},{{90}^{\circ }},etc.\] to easily solve these type of questions as we can find other angles using these angles. Also, take care of the calculations while solving the question and properly use the trigonometric ratios as well.
Complete step by step answer:
In this question, we are given that from a point on the horizontal plane, the elevation of the top of a hill is \[{{45}^{\circ }}.\] After walking 500m in towards its summit up a slope inclined at an angle of \[{{15}^{\circ }}\] to the horizon, the elevation is \[{{75}^{\circ }}.\] And we have to find the value of the height of the hill.
Let us first draw a figure according to the given information.

In the above figure, we have assumed that
AC is the height of the hill
\[\angle AEC={{45}^{\circ }}=\text{ the angle of elevation of the top of the hill}\]
\[\angle FED={{15}^{\circ }}=\text{ the angle of inclination of the slope to the horizontal}\]
EF = 500m = distance of the slope
\[\angle AFB={{75}^{\circ }}=\text{ the angle of elevation after walking 500m up the slope}\]
Let us consider triangle FDE from the figure. We know that \[\sin \theta =\dfrac{\text{perpendicular}}{\text{hypotenuse}}.\] By using these, we get,
\[\sin {{15}^{\circ }}=\dfrac{FD}{EF}.....\left( i \right)\]
We can write \[\sin {{15}^{\circ }}=\sin \left( {{45}^{\circ }}-{{30}^{\circ }} \right).\]
We know that sin (A – B) = sin A cos B – cos A sin B. By using this, we get,
\[\Rightarrow \sin {{15}^{\circ }}=\sin {{45}^{\circ }}\cos {{30}^{\circ }}-\cos {{45}^{\circ }}\sin {{30}^{\circ }}\]
From the table of trigonometric ratios of standard angles, we know that,
\[\sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}}\]
\[\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}\]
\[\sin {{30}^{\circ }}=\dfrac{1}{2}\]
By using this, we get,
\[\Rightarrow \sin {{15}^{\circ }}=\dfrac{1}{\sqrt{2}}.\dfrac{\sqrt{3}}{2}-\dfrac{1}{\sqrt{2}}.\dfrac{1}{2}\]
\[\Rightarrow \sin {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{2\sqrt{2}}\]
By substituting the value of \[\sin {{15}^{\circ }}\] in equation (i), we get,
\[\Rightarrow \dfrac{\sqrt{3}-1}{2\sqrt{2}}=\dfrac{FD}{EF}\]
From the figure, we know that EF = 500m. So, we get,
\[\Rightarrow \dfrac{\sqrt{3}-1}{2\sqrt{2}}=\dfrac{FD}{500}\]
\[\Rightarrow FD=\dfrac{\sqrt{3}-1}{2\sqrt{2}}\times 500\]
\[\Rightarrow FD=250\left( \dfrac{\sqrt{3}-1}{\sqrt{2}} \right)m......\left( ii \right)\]
We also know that \[\cos \theta =\dfrac{\text{base}}{\text{hypotenuse}}.\]
So, in triangle FDE, we get, \[\cos {{15}^{\circ }}=\dfrac{ED}{EF}.\]
In the similar way, we get \[\cos {{15}^{\circ }}=\dfrac{\sqrt{3}+1}{2\sqrt{2}}.\] So, we get,
\[\Rightarrow \dfrac{ED}{EF}=\dfrac{\sqrt{3}+1}{2\sqrt{2}}\]
We know that EF = 500m. So, we get,
\[\Rightarrow \dfrac{\sqrt{3}+1}{2\sqrt{2}}=\dfrac{ED}{500}\]
So, we get,
\[\Rightarrow ED=\left( 500 \right)\left[ \dfrac{\sqrt{3}+1}{2\sqrt{2}} \right]\]
\[\Rightarrow ED=\left( 250 \right)\left( \dfrac{\sqrt{3}+1}{\sqrt{2}} \right)m......\left( iii \right)\]
Now let us consider triangle ACE, we know that \[\tan \theta =\dfrac{\text{perpendicular }}{\text{base}}.\]
So, we get \[\tan {{45}^{\circ }}=\dfrac{AC}{EC}.\] We know that \[\tan {{45}^{\circ }}=1.\] So, we get,
\[1=\dfrac{AC}{EC}\]
\[AC=EC......\left( iv \right)\]
Now, let us consider triangle ABF, we get,
\[\tan {{75}^{\circ }}=\dfrac{AB}{BF}.....\left( v \right)\]
We can write \[\tan {{75}^{\circ }}=\tan \left( {{45}^{\circ }}+{{30}^{\circ }} \right).\]
We also know that, \[\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}.\]
By using this formula, we get,
\[\tan {{75}^{\circ }}=\dfrac{\tan {{45}^{\circ }}+\tan {{30}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{30}^{\circ }}}\]
We know that \[\tan {{45}^{\circ }}=1\] and \[\tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}}.\] So, we get,
\[\Rightarrow \tan {{75}^{\circ }}=\dfrac{1+\dfrac{1}{\sqrt{3}}}{1-\dfrac{1}{\sqrt{3}}}\]
\[\Rightarrow \tan {{75}^{\circ }}=\dfrac{\left( \sqrt{3}+1 \right)}{\left( \sqrt{3}-1 \right)}\times \dfrac{\left( \sqrt{3}+1 \right)}{\left( \sqrt{3}+1 \right)}\]
\[\Rightarrow \tan {{75}^{\circ }}=2+\sqrt{3}\]
By substituting the value of \[\tan {{75}^{\circ }}\] in equation (v), we get,
\[\Rightarrow \left( 2+\sqrt{3} \right)=\dfrac{AB}{BF}\]
From the figure, we can also write the above equation as
\[\Rightarrow \left( 2+\sqrt{3} \right)=\dfrac{AC-BC}{BF}\]
From the figure, we can see that BF = CD and FD = BC. So, we get,
\[\Rightarrow \left( 2+\sqrt{3} \right)=\dfrac{AC-BC}{CD}\]
\[\Rightarrow \left( 2+\sqrt{3} \right)=\dfrac{AC-BC}{EC-ED}\]
By substituting the values of BC, ED and EC from equation (ii), (iii) and (iv) respectively, we get,
\[\Rightarrow \left( 2+\sqrt{3} \right)=\dfrac{AC-250\left( \dfrac{\sqrt{3}-1}{\sqrt{2}} \right)}{AC-250\left( \dfrac{\sqrt{3}+1}{\sqrt{2}} \right)}\]
\[\Rightarrow \left( 2+\sqrt{3} \right)=\dfrac{\sqrt{2}AC-250\left( \sqrt{3}-1 \right)}{\sqrt{2}AC-250\left( \sqrt{3}+1 \right)}\]
By cross multiplying the above equation, we get,
\[\Rightarrow \left( 2+\sqrt{3} \right)\left( \sqrt{2}AC-250\left( \sqrt{3}+1 \right) \right)=\left[ \sqrt{2}AC-250\left( \sqrt{3}-1 \right) \right]\]
\[\Rightarrow 2\sqrt{2}AC-500\left( \sqrt{3}+1 \right)+\sqrt{6}AC-250\sqrt{3}\left( \sqrt{3}+1 \right)=\sqrt{2}AC-250\left( \sqrt{3}-1 \right)\]
By taking all the constant terms to the RHS, we get,
\[\Rightarrow 2\sqrt{2}AC+\sqrt{6}AC-\sqrt{2}AC=500\left( \sqrt{3}+1 \right)+250\sqrt{3}\left( \sqrt{3}+1 \right)-250\left( \sqrt{3}-1 \right)\]
\[\Rightarrow AC\left( 2\sqrt{2}+\sqrt{6}-\sqrt{2} \right)=500\sqrt{3}+500+750+250\sqrt{3}-250\sqrt{3}+250\]
By cancelling the opposite terms, we get,
\[\Rightarrow AC\left( \sqrt{2}+\sqrt{6} \right)=500\sqrt{3}+1500\]
\[\Rightarrow AC\sqrt{2}\left( 1+\sqrt{3} \right)=500\sqrt{3}\left( 1+\sqrt{3} \right)\]
\[\Rightarrow AC=\dfrac{500\sqrt{3}\left( 1+\sqrt{3} \right)}{\sqrt{2}\left( 1+\sqrt{3} \right)}\]
By cancelling the like terms and multiplying \[\sqrt{2}\] on both the numerator and denominator, we get,
\[\Rightarrow AC=\dfrac{500\sqrt{6}}{2}\]
\[\Rightarrow AC=250\sqrt{6}m\]
So, the correct answer is “Option c”.
Note: In these types of questions, it is very important to draw the figure to clearly visualize the question and use it in the solution wherever necessary. Also, students must remember the trigonometric ratios of the standard angles like \[{{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }},{{90}^{\circ }},etc.\] to easily solve these type of questions as we can find other angles using these angles. Also, take care of the calculations while solving the question and properly use the trigonometric ratios as well.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Dr BR Ambedkars fathers name was Ramaji Sakpal and class 10 social science CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the full form of POSCO class 10 social science CBSE
