
From 200mg of $C{{O}_{2}}$ ,${{10}^{21}}$ molecules are removed how many moles of $C{{O}_{2}}$ are left?
Answer
561k+ views
Hint:
-The number $6.022\times {{10}^{23}}$ is also known as Avogadro’s number. The concept of mole can be used to convert between mass and number of particles.
-Number of moles of any substance is the number of molecules of that substance present per avogadro’s number.
Complete step by step answer:
Here we are given the molar mass of $C{{O}_{2}}$ = \[44{ }g\]
Given mass \[=200mg=0.2g\]
Number of moles = $\dfrac{0.2}{44}=0.0045$
So, applying the formula given below:
$\Rightarrow $ Number of molecules $=$ Avogadro’s number $\times $ number of moles-------(1)
Putting the values of number of moles and Avogadro’s number in the equation (1) we get:
$\Rightarrow $ Number of molecules = ${6}{.022 \times 1}{{{0}}^{{23}}}{\times 0}{.0045}$
$\Rightarrow $ Number of molecules = ${2}{.7 \times 1}{{{0}}^{{21}}}$
As it is given in the question that ${{10}^{21}}$ molecules are removed so the number of molecules that are left are given as;
No of molecules left = ${2}{.7 \times 1}{{{0}}^{{21}}}{- 1}{{{0}}^{{21}}}{= 1}{.7 \times 1}{{{0}}^{{21}}}$
So the number of moles of carbon dioxide that are left = $\dfrac{\text{No of molecules}}{\text{Avogadro's number}}=\dfrac{1.7 \times {{10}^{21}}}{6.022 \times {{10}^{23}}}={2}{.8 \times 1}{{{0}}^{{-3}}}$
We can see that after substituting the number of molecules of carbon dioxide left which we calculated above, and the Avogadro’s number which is a Constant term and is known to us, we found out the number of moles of carbon dioxide. Hence, the number of moles of carbon dioxide left = ${2}{.8 \times 1}{{{0}}^{{-3}}}$ . So this is the required answer.
Note: The concept of mole is important because it allows chemists with subatomic worlds with macro world units and amounts. Basically it provides a bridge between the atom and the macroscopic quantities on which we work in the laboratory. Always apply the formula used above to find the number of molecules and take care of the units of mass always.
-The number $6.022\times {{10}^{23}}$ is also known as Avogadro’s number. The concept of mole can be used to convert between mass and number of particles.
-Number of moles of any substance is the number of molecules of that substance present per avogadro’s number.
Complete step by step answer:
Here we are given the molar mass of $C{{O}_{2}}$ = \[44{ }g\]
Given mass \[=200mg=0.2g\]
Number of moles = $\dfrac{0.2}{44}=0.0045$
So, applying the formula given below:
$\Rightarrow $ Number of molecules $=$ Avogadro’s number $\times $ number of moles-------(1)
Putting the values of number of moles and Avogadro’s number in the equation (1) we get:
$\Rightarrow $ Number of molecules = ${6}{.022 \times 1}{{{0}}^{{23}}}{\times 0}{.0045}$
$\Rightarrow $ Number of molecules = ${2}{.7 \times 1}{{{0}}^{{21}}}$
As it is given in the question that ${{10}^{21}}$ molecules are removed so the number of molecules that are left are given as;
No of molecules left = ${2}{.7 \times 1}{{{0}}^{{21}}}{- 1}{{{0}}^{{21}}}{= 1}{.7 \times 1}{{{0}}^{{21}}}$
So the number of moles of carbon dioxide that are left = $\dfrac{\text{No of molecules}}{\text{Avogadro's number}}=\dfrac{1.7 \times {{10}^{21}}}{6.022 \times {{10}^{23}}}={2}{.8 \times 1}{{{0}}^{{-3}}}$
We can see that after substituting the number of molecules of carbon dioxide left which we calculated above, and the Avogadro’s number which is a Constant term and is known to us, we found out the number of moles of carbon dioxide. Hence, the number of moles of carbon dioxide left = ${2}{.8 \times 1}{{{0}}^{{-3}}}$ . So this is the required answer.
Note: The concept of mole is important because it allows chemists with subatomic worlds with macro world units and amounts. Basically it provides a bridge between the atom and the macroscopic quantities on which we work in the laboratory. Always apply the formula used above to find the number of molecules and take care of the units of mass always.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

