
How many four-letter words can be formed by using the letters of the word “HARD WORK”?
Answer
554.1k+ views
Hint: Here, we will find the number of four-letter words that can be formed where the letter R comes at most once, that is each letter comes once. Then, we will find the number of four-letter words that can be formed where the letter R comes twice. Finally, we will add the two results to get the number of four-letter words that can be formed by using the letters of the word “HARD WORK”.
Formula Used:
The number of permutations in which a set of \[n\] objects can be arranged in \[r\] places is given by \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], where no object is repeated.
The number of permutations to arrange \[n\] objects is given by \[\dfrac{{n!}}{{{r_1}!{r_2}! \ldots {r_n}!}}\], where an object appears \[{r_1}\] times, another object repeats \[{r_2}\], and so on.
Complete step-by-step answer:
The number of letters in the word ‘HARD WORK are 8, where R comes twice.
The letters are to be arranged in 4 places.
The number of permutations in which a set of \[n\] objects can be arranged in \[r\] places is given by \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], where no object is repeated.
The number of permutations to arrange \[n\] objects is given by \[\dfrac{{n!}}{{{r_1}!{r_2}! \ldots {r_n}!}}\], where an object appears \[{r_1}\] times, another object repeats \[{r_2}\], and so on.
Thus, we can find the answer using two cases.
Case 1: The letter R is not repeated in the 4 places.
We have 7 letters to be placed in 4 spaces.
The 7 letters are H, A, R, D, W, O, K.
We observe that no letter is being repeated.
Substituting \[n = 7\] and \[r = 4\] in the formula \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], we get
\[{}^7{P_4} = \dfrac{{7!}}{{\left( {7 - 3} \right)!}} = \dfrac{{7!}}{{4!}} = \dfrac{{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{4 \times 3 \times 2 \times 1}} = 840\]
Therefore, the number of four-letter words that can be formed where the letter R comes at most once, is 840.
Case 2: The letter R is repeated in the 4 places.
In the 4 places, 2 places will be taken by the two R’s, and the remaining 2 places will be taken by any of the remaining 6 letters.
The number of ways in which this is possible can be found by using combinations.
Therefore, we get
Number of four-letter words where R is repeated (order not important) \[ = {}^2{C_2} \times {}^6{C_2}\]
Since the order matters in the number of words we need to find, we will find the order in which the 4 letters (chosen in \[{}^2{C_2} \times {}^6{C_2}\] ways) can be placed in the 4 places, where R is repeated.
This can be found by using the formula \[\dfrac{{n!}}{{{r_1}!{r_2}! \ldots {r_n}!}}\].
Thus, the four chosen letters can be ordered in \[\dfrac{{4!}}{{2!}}\] ways.
Therefore, we get the number of four-letter words where the 7 letters are placed in 4 places, and R is repeated, is given by \[{}^2{C_2} \times {}^6{C_2} \times \dfrac{{4!}}{{2!}}\] ways.
Here, \[{}^2{C_2} \times {}^6{C_2}\] is the number of ways of choosing the letters to be placed within the 4 places, and \[\dfrac{{4!}}{{2!}}\] is the number of ways in which the chosen 4 letters can be ordered.
Simplifying the expression, we get
Number of four-letter words where the letter R is repeated \[ = 1 \times \dfrac{{6 \times 5}}{{2 \times 1}} \times \dfrac{{4 \times 3 \times 2 \times 1}}{{2 \times 1}} = 180\]
Therefore, the number of four-letter words where the letter R is repeated is 180.
Finally, we will calculate the number of four-letter words that can be formed using the letters of the word “HARD WORK”.
The number of four-letter words that can be formed using the letters of the word “HARD WORK” is the sum of the number of four-letter words that can be formed where the letter R comes at most once, and the number of four-letter words that can be formed where the letter R comes twice.
Thus, we get the number of four-letter words that can be formed using the letters of the word “HARD WORK” is \[840 + 180 = 1020\] words.
Therefore, 1020 four-letter words can be formed using the letters of the word “HARD WORK”.
Note: We used combinations to get the number of four-letter words where the letter R is repeated (order not important). The number of combinations in which a set of \[n\] objects can be arranged in \[r\] places is given by \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]. Therefore, the number of ways in which the 2 R’s can be placed in 2 places is \[{}^2{C_2}\], and the number of ways to place the remaining 6 letters in the 2 places is \[{}^6{C_2}\]. By multiplying these, we get the number of ways to place the 8 letters in the 4 places, such that the letter R comes twice, and order of letters does not matter.
Formula Used:
The number of permutations in which a set of \[n\] objects can be arranged in \[r\] places is given by \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], where no object is repeated.
The number of permutations to arrange \[n\] objects is given by \[\dfrac{{n!}}{{{r_1}!{r_2}! \ldots {r_n}!}}\], where an object appears \[{r_1}\] times, another object repeats \[{r_2}\], and so on.
Complete step-by-step answer:
The number of letters in the word ‘HARD WORK are 8, where R comes twice.
The letters are to be arranged in 4 places.
The number of permutations in which a set of \[n\] objects can be arranged in \[r\] places is given by \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], where no object is repeated.
The number of permutations to arrange \[n\] objects is given by \[\dfrac{{n!}}{{{r_1}!{r_2}! \ldots {r_n}!}}\], where an object appears \[{r_1}\] times, another object repeats \[{r_2}\], and so on.
Thus, we can find the answer using two cases.
Case 1: The letter R is not repeated in the 4 places.
We have 7 letters to be placed in 4 spaces.
The 7 letters are H, A, R, D, W, O, K.
We observe that no letter is being repeated.
Substituting \[n = 7\] and \[r = 4\] in the formula \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], we get
\[{}^7{P_4} = \dfrac{{7!}}{{\left( {7 - 3} \right)!}} = \dfrac{{7!}}{{4!}} = \dfrac{{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}}{{4 \times 3 \times 2 \times 1}} = 840\]
Therefore, the number of four-letter words that can be formed where the letter R comes at most once, is 840.
Case 2: The letter R is repeated in the 4 places.
In the 4 places, 2 places will be taken by the two R’s, and the remaining 2 places will be taken by any of the remaining 6 letters.
The number of ways in which this is possible can be found by using combinations.
Therefore, we get
Number of four-letter words where R is repeated (order not important) \[ = {}^2{C_2} \times {}^6{C_2}\]
Since the order matters in the number of words we need to find, we will find the order in which the 4 letters (chosen in \[{}^2{C_2} \times {}^6{C_2}\] ways) can be placed in the 4 places, where R is repeated.
This can be found by using the formula \[\dfrac{{n!}}{{{r_1}!{r_2}! \ldots {r_n}!}}\].
Thus, the four chosen letters can be ordered in \[\dfrac{{4!}}{{2!}}\] ways.
Therefore, we get the number of four-letter words where the 7 letters are placed in 4 places, and R is repeated, is given by \[{}^2{C_2} \times {}^6{C_2} \times \dfrac{{4!}}{{2!}}\] ways.
Here, \[{}^2{C_2} \times {}^6{C_2}\] is the number of ways of choosing the letters to be placed within the 4 places, and \[\dfrac{{4!}}{{2!}}\] is the number of ways in which the chosen 4 letters can be ordered.
Simplifying the expression, we get
Number of four-letter words where the letter R is repeated \[ = 1 \times \dfrac{{6 \times 5}}{{2 \times 1}} \times \dfrac{{4 \times 3 \times 2 \times 1}}{{2 \times 1}} = 180\]
Therefore, the number of four-letter words where the letter R is repeated is 180.
Finally, we will calculate the number of four-letter words that can be formed using the letters of the word “HARD WORK”.
The number of four-letter words that can be formed using the letters of the word “HARD WORK” is the sum of the number of four-letter words that can be formed where the letter R comes at most once, and the number of four-letter words that can be formed where the letter R comes twice.
Thus, we get the number of four-letter words that can be formed using the letters of the word “HARD WORK” is \[840 + 180 = 1020\] words.
Therefore, 1020 four-letter words can be formed using the letters of the word “HARD WORK”.
Note: We used combinations to get the number of four-letter words where the letter R is repeated (order not important). The number of combinations in which a set of \[n\] objects can be arranged in \[r\] places is given by \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]. Therefore, the number of ways in which the 2 R’s can be placed in 2 places is \[{}^2{C_2}\], and the number of ways to place the remaining 6 letters in the 2 places is \[{}^6{C_2}\]. By multiplying these, we get the number of ways to place the 8 letters in the 4 places, such that the letter R comes twice, and order of letters does not matter.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

