
Four grams of graphite is burnt in a bomb calorimeter of heat capacity $\text{ 30 kJ }{{\text{K}}^{-1}}\text{ }$in excess of oxygen at 1 atmospheric pressure. The temperature rises from $\text{ 300 K }$to$\text{ 304 K }$. What is the enthalpy of combustion of graphite (in$\text{ kJ mo}{{\text{l}}^{-1}}$ )?
A) $\text{ }360\text{ }$
B) $\text{ 1440 }$
C) $-360\text{ }$
D) $-1440\text{ }$
Answer
567.3k+ views
Hint: Suppose a system containing the compound A is subjected to the combustion in the calorimetry combustion, then the enthalpy of combustion i.e.
$\text{ H = C }\times \text{ }\theta \times \dfrac{M}{m}\text{ }$
Here, H is the constant volume heat of combustion or the enthalpy of combustion, C is the thermal heat capacity of the calorimeter, $\text{ }\theta \text{ }$ is the temperature change, M is the molar mass of the substance and m is the given weight of the substance.
Complete answer:
Suppose a system containing the compound A is subjected to the combustion in the calorimetry combustion, then the enthalpy of combustion i.e.
$\text{ H = C }\times \text{ }\theta \times \dfrac{M}{m}\text{ }$
Here, H is the constant volume heat of combustion or the enthalpy of combustion, C is the thermal heat capacity of the calorimeter, $\text{ }\theta \text{ }$ is the temperature change, M is the molar mass of the substance and m is the given weight of the substance.
We have given the following data:
Amount of graphite burnt is, $\text{ w = 4 g }$
The heat capacity of the calorimeter is given as $\text{ 30 kJ }{{\text{K}}^{-1}}\text{ }$
The pressure is equal to 1 atm
The temperature rises from $\text{ }{{\text{T}}_{\text{1}}}\text{ = 300 K }$ to ${{\text{T}}_{2}}\text{ = 304 K}$.
We are interested to find out the enthalpy of combustion of graphite in calorimetry.
Let's substitute the values in the equation, we have,
$\begin{align}
& \text{ H = C }\times \text{ }\theta \times \dfrac{M}{m}\text{ } \\
& \Rightarrow \left( -30\text{ kJ mo}{{\text{l}}^{-1}} \right)\times \left( 304-300 \right)\times \dfrac{12\text{ }}{4\text{ }} \\
& \Rightarrow \left( -30\text{ kJ mo}{{\text{l}}^{-1}} \right)\times 4\times \dfrac{12\text{ }}{4\text{ }}\text{ } \\
& \therefore \text{ H}=\text{ }-360\text{ kJ mo}{{\text{l}}^{-1}} \\
\end{align}$
Thus, heat or enthalpy of combustion for the graphite in excess of oxygen is equal to $\text{ }-360\text{ kJ mo}{{\text{l}}^{-1}}\text{ }$ .
Hence, (C) is the correct option.
Note:
It may be noted that the enthalpy of a reaction can also be written as follows,
$\text{ }{{\text{q}}_{\text{P}}}\text{ = H + }\Delta {{\text{n}}_{\text{g}}}\text{RT }$
Where ${{\text{q}}_{\text{P}}}$ is the total enthalpy of reaction, $\text{ }\Delta {{\text{n}}_{\text{g}}}\text{ }$is the difference between the number of moles of the gaseous product and gaseous reactant and T is the temperature ($\text{ 298K }$ ). $\text{ C + }{{\text{O}}_{\text{2}}}\to \text{C}{{\text{O}}_{\text{2}}}\text{ }$
$\text{ }\Delta {{\text{n}}_{\text{g}}}\text{ }$will be equal to, $\text{ 1}-(2)\text{ = }-1\text{ }$. Thus, the enthalpy of the graphite would be,
$\begin{align}
& \text{ }{{\text{q}}_{\text{P}}}\text{ = }-360\text{ kJ mo}{{\text{l}}^{-1}}\text{ + (}-1)\left( 8.314\times {{10}^{-3}} \right)\left( 298\text{K} \right)\text{ } \\
& \Rightarrow \text{ (}-360\text{ }-2.477)\text{kJ mo}{{\text{l}}^{-1}}\text{ } \\
& \therefore {{\text{q}}_{\text{P}}}\text{= 362}\text{.47 kJ mo}{{\text{l}}^{-1}} \\
\end{align}$
$\text{ H = C }\times \text{ }\theta \times \dfrac{M}{m}\text{ }$
Here, H is the constant volume heat of combustion or the enthalpy of combustion, C is the thermal heat capacity of the calorimeter, $\text{ }\theta \text{ }$ is the temperature change, M is the molar mass of the substance and m is the given weight of the substance.
Complete answer:
Suppose a system containing the compound A is subjected to the combustion in the calorimetry combustion, then the enthalpy of combustion i.e.
$\text{ H = C }\times \text{ }\theta \times \dfrac{M}{m}\text{ }$
Here, H is the constant volume heat of combustion or the enthalpy of combustion, C is the thermal heat capacity of the calorimeter, $\text{ }\theta \text{ }$ is the temperature change, M is the molar mass of the substance and m is the given weight of the substance.
We have given the following data:
Amount of graphite burnt is, $\text{ w = 4 g }$
The heat capacity of the calorimeter is given as $\text{ 30 kJ }{{\text{K}}^{-1}}\text{ }$
The pressure is equal to 1 atm
The temperature rises from $\text{ }{{\text{T}}_{\text{1}}}\text{ = 300 K }$ to ${{\text{T}}_{2}}\text{ = 304 K}$.
We are interested to find out the enthalpy of combustion of graphite in calorimetry.
Let's substitute the values in the equation, we have,
$\begin{align}
& \text{ H = C }\times \text{ }\theta \times \dfrac{M}{m}\text{ } \\
& \Rightarrow \left( -30\text{ kJ mo}{{\text{l}}^{-1}} \right)\times \left( 304-300 \right)\times \dfrac{12\text{ }}{4\text{ }} \\
& \Rightarrow \left( -30\text{ kJ mo}{{\text{l}}^{-1}} \right)\times 4\times \dfrac{12\text{ }}{4\text{ }}\text{ } \\
& \therefore \text{ H}=\text{ }-360\text{ kJ mo}{{\text{l}}^{-1}} \\
\end{align}$
Thus, heat or enthalpy of combustion for the graphite in excess of oxygen is equal to $\text{ }-360\text{ kJ mo}{{\text{l}}^{-1}}\text{ }$ .
Hence, (C) is the correct option.
Note:
It may be noted that the enthalpy of a reaction can also be written as follows,
$\text{ }{{\text{q}}_{\text{P}}}\text{ = H + }\Delta {{\text{n}}_{\text{g}}}\text{RT }$
Where ${{\text{q}}_{\text{P}}}$ is the total enthalpy of reaction, $\text{ }\Delta {{\text{n}}_{\text{g}}}\text{ }$is the difference between the number of moles of the gaseous product and gaseous reactant and T is the temperature ($\text{ 298K }$ ). $\text{ C + }{{\text{O}}_{\text{2}}}\to \text{C}{{\text{O}}_{\text{2}}}\text{ }$
$\text{ }\Delta {{\text{n}}_{\text{g}}}\text{ }$will be equal to, $\text{ 1}-(2)\text{ = }-1\text{ }$. Thus, the enthalpy of the graphite would be,
$\begin{align}
& \text{ }{{\text{q}}_{\text{P}}}\text{ = }-360\text{ kJ mo}{{\text{l}}^{-1}}\text{ + (}-1)\left( 8.314\times {{10}^{-3}} \right)\left( 298\text{K} \right)\text{ } \\
& \Rightarrow \text{ (}-360\text{ }-2.477)\text{kJ mo}{{\text{l}}^{-1}}\text{ } \\
& \therefore {{\text{q}}_{\text{P}}}\text{= 362}\text{.47 kJ mo}{{\text{l}}^{-1}} \\
\end{align}$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

